Buradasınız

DÜZGÜNLEŞTİRİLMİŞ FONKSİYONEL ANA BİLEŞENLER ANALİZİ İLE İMKB VERİLERİNİN İNCELENMESİ

Journal Name:

Publication Year:

Abstract (2. Language): 
In most situations, modern technological developments give rise to the cases where samples are drawn from a population of real random functions. Functional Data Analysis (FDA) is an appropriate multivariate statistical approximation since the classical multivariate methods can not be used when a random sample consists of such n-real functions. Generally the functions are sampled discretely in time and a certain smoothing technique is used to obtain underlying functions. In this study we first give a detailed theory of B-Splines and then obtain cubic splines as linear combinations based on the coefficients resulted from an implementation of the Roughness Penalty Method. We then present a comprehensive theoretical background of the functional data analysis with a special attention given to the functional and regularized functional principal components concepts that are very useful to explore and interpret the variability of the functions and also their derivatives especially when one has a large number of functions. Finally, an application of the regularized functional principal components on the weekly closing share prices data of the thirteen companies belonging to the ISE-100 index is presented. Interpretations of the derivative functions, covariance surface and principal component functions are also given in detail.
Abstract (Original Language): 
Fonksiyonel Veri Analizi Yöntemleri reel bir aralığın sonlu bir alt setinde değerlendirilen eğrilerden veya gözlenen fonksiyonlardan oluşan verileri analiz etmek üzere geliştirilmiştir. Fonksiyonel Veri Analizindeki teknikler, xi(t) (i = 1, 2, … , N) şeklinde belirtilen fonksiyonlardan veya onların türevlerinden oluşan rastgele örneklerdeki değişimin (varyasyonun) incelenmesi ve araştırılması amacıyla kullanılabilir. Pratikte bu fonksiyonlar sıklıkla ayrık noktalarda gözlenen verilere uygulanan düzgünleştirme (smoothing) süreçlerinin bir sonucu olarak ortaya çıkarlar. Bu çalışmada da Splayn Düzgünleştirme Yöntemleri bu amaçla ele alınmıştır. Bu araştırmanın amacı, ayrık noktalarda gözlenen verileri öncelikle B-Splayn Baz Fonksiyonlar ve Pürüzlü Ceza Yaklaşımı kullanarak bir diğer deyişle bu iki yaklaşımın birlikte kullanılması olarak adlandırılan Splayn Düzgünleştirme Yöntemi ile sürekli ve türevlenebilir fonksiyonlar haline dönüştürülmesinin incelenmesidir. Daha sonra da veriler arasındaki yani ilgilenilen zaman aralığında hisse senetlerinin bireysel fonksiyonları arasındaki değişkenlik yapısını ortaya koymak üzere Düzgünleştirilmiş Fonksiyonel Ana Bileşenler Analizinden faydalanılmıştır. Burada ilgilenilen birey sayısı değişken sayısından az olduğundan dolayı klasik yöntemler zaten bu amaç doğrultusunda yetersiz kalmaktadır. Bu çalışmada, IMKB-100 endeksinde yer alan şirketlerin haftalık hisse senedi kapanış fiyatlarından oluşan bir örnek üzerinde yapılan uygulamaya yer verilmektedir. Düzgünleştirilmiş Fonksiyonel Ana Bileşenler Analizi ile incelenen 13 şirket için özellikle 2000 yılının başlarında ve 360 ıncı günden bir diğer deyişle 2005 yılından itibaren fiyatların değişkenliğinde bir artış olduğu ve zaman noktalarının ardışık olarak birbirleriyle pozitif bir korelasyona sahip olduğu ulaşılan önemli sonuçlardan bir tanesidir. Geleneksel Ana Bileşenler yönteminin uygulanmasının mümkün olmadığı durumlarda bile uygulanabilen ve sistemdeki gürültü (noise) etkisini de kaldıran bir yöntem olan Düzgünleştirilmiş Ana Bileşenler Analizi sonucu elde edilen harmonikler sayesinde hem verilerin kovaryans yüzeyiyle açıklanamayan değişkenlik yapısı ortaya konulmuş ve hem de genel anlamda Fonksiyonel Veri Analizi ile örneğin türev fonksiyonlarının da incelenebilmesi gibi görsel olarak da kuvvetli bulgular sunulmuştur.
1-32

JEL Codes:

REFERENCES

References: 

Barra V. (2004) Analysis of Gene Expression Data Using Functional Principal Components, Computer methods
and programs in biomedicine, 75(11).
Benko M. (2004). Functional Principal Components analysis, Implementation and Applications. A Master
Thesis. Humboldt University Center of Applied Statistics and Economics, Berlin.
Benko M., Hardle W., Kneip A.(2006). Common Functional Principal Components, SFB
649,DiscussionPaper,Erişim:10.11.2006, http://ideas.repec.org/p/hum/wpaper/sfb649dp2006-010.html
Besse P., Ramsay J.O. (1986). Principal Components Analysis Of Sampled Functions, Psychometrica, 51(2)
Boor C . (1978). A Practical Guide to Splines. Springer-Verlag: New-York
Castro P. E, Lawton W. H., Sylvestre E. A. (1986). Principal Modes Of Variation for Processes with Continuous
Sample Curves, Technometrics, 28(4).
Costanzo G.D. (2005). Functional Principal Component Analysis of Financial Time Series, Cnam-Paris.
Dauxois J., Pousse A., Romain Y. (1982). Asymptotic theory for the principal component analysis of a vector
random function : some applications to statistical inference, J. Multivariate Analysis, 12
Dierckx P. (1993). Curve and Surface Fitting with Splines. Oxford University Press:New York
Eubank R.L. (1999). Nonparametric Regression and Spline Smoothing. Marcel Dekker: USA.
Green.P.J., & Silverman B.W. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness
Penalty Approach. Chapman & Hall:London.
Hall P. , Nasab H. M. (2006). On Properties Of Functional Principal Components Analysis. Journal of the
Royal Statistical Society: Series B, 68(1).
Hyde V., Moore E., & Hodge A. (2006). Functional Pca For Exploring Bidding Acivity Times for Online
Auctions. Erişim:06.07.2006,http://www.rhsmith.umd.edu/ceme/statistics/functionalpca.pdf
James G. M., Hastie T.J., Sugar C.A. (2000) Principal Components Models For Sparse Functional Data,
Biometrica, 87(3).
Jank W., & Shmueli G. (2006). Functional Data Analysis in Electronic Commerce Research. Statistical Science,
21(2).
Jones M. C., Rice J. A. (1992). Displaying The Important Features Of Large Collections Of Similar Curves. The
American Statistician, 46(2).
Laukaitis A., Rackauskas A. (2002). Functional Data Analysis of Payment Systems. Nonlinear Analysis:
Modelling and Control, 7(2).
Lee H.J. (2004). Functional Data Analysis: Classification and Regression. Doctor of Philosophy, Texas A&M
University.
Leurgans S.E., Moyeed R.A, Silverman B.W. (1993). Canonical Correlation Analysis when the Data are
Curves. Journal of the Royal Statistical Society: Series B., 55(3).
Lillestol J., & Ollmar F. (2003). Functional Data Analysis: Introduction and Applications to Financial
Electricity Contracts. Erişim: 01.03.2005, http://www.nhh.no/for/dp/2003/0603.pdf
Lober E.M., & Villa C. (2004). Functional Principal Component Analysis of the Yield Curve, Erişim:
05.05.2005 , http://www.u-cergy.fr/AFFI_2004/IMG/pdf/MATZNER.pdf
Lyche, T., Morken, K. (2002). Spline Methods Draft, Erişim: 10.07.2005,
http://www.ifi.uio.no/in329/nchap1.pdf
Musayev B., & Alp M. (2000). Fonksiyonel Analiz. Balcı Yayınları: Kütahya
Müler, H. G. (2005). Functional Modelling and Classification of Longitudinal Data, Scandavian Journal of
Statistics, 32(2).
Nürnberger G. (1989). Approximation by Spline Functions. Springer – Verlag: Berlin.
Ramsay, J. O., Dalzell C. (1991). Some Tools For Functonal Data Analysis, Journal of the Royal Statistical
Society: Series B.,53 (3)
Ramsay J.O., Silverman B.W. (1997). Functional Data Analysis. Springer – Verlag: New York.
Ramsay J. O. , Li X. (1998). Curve Registration, Journal of the Royal Statistical Society: Series B, 60(2).
Ramsay J.O., (2000). Basis Functions, Erişim:11.04.2005, ftp://ego.psych.mcgill.ca
Ramsay J.O, Silverman B.W. (2002). Applied Functional Data Analysis: Methods and Case Studies. Springer –
Verlag: New York.
Ramsay J.O., Silverman B.W. (2005). Functional Data Analysis. Second Edition. Springer : USA
Rao, C. R. (1958). Some Statistical Methods for Comparison of Growth Curves. Biometrics, 14(1).
Reinsch C.H. (1967). Smoothing By Spline Functions. Numerische Mathematik, 10.
Schumaker L.L. (1993). Spline Functions: Basic Theory. Krieger Publishing Company: Florida
Silverman B.W. (1985). Some Aspects Of The Spline Smoothing Approach To Non-Parametric Regression
Curve Fitting. Journal of the Royal Statistical Society: Series B., 47(1).
Silverman B. W. (1995). Incorporating Parametric Effects into Functional Principal Components Analysis
Journal of the Royal Statistical Society: Series B.,57(4).
Silverman B.W.(1996). Smoothed Functional Principal Component Analysis By Choice Of Norm. The Annals of
Statistics, 24(1)
Simonoff J.S. (1996). Smoothing Methods in Statistics, Springer – Verlag: New- York.
Ulbricht J.(2004). Representing Functional Data as Smooth Functions. A Master Thesis, Humboldt University
Institute of Statistics and Econometrics, Berlin.
Wittaker E.T. (1923). On a New Method of Graduation, Proc. Edinburg Mathematics Society, 41.
Yamanishi Y., & Tanaka Y. (2005). Sensitivity Analysis in Functional Principal Component Analysis,
Computational Statistics, 20(2).
Yamanishi Y., (2004). Statistical Case Studies: Biostatistics and Geostatistics, Erişim: 01.07.2005,
http://www.quantlet.com/mdstat/scripts/xcs/pdf/xcspdf.pdf
Yao F., Lee T.C.M. (2006). Penalized Spline Models For Functional Principal Component Analysis, Journal of
the Royal Statistical Society: Series B., 68(1).
Zhang, J. T. (1999). Smoothed Functional Data Analysis, Doctor of Philosophy, University of North Carolina,
1999.

Thank you for copying data from http://www.arastirmax.com