Buradasınız

COMMUTATIVITY OF RINGS WITH CONSTRAINTS ON COMMUTATORS

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this paper, we study the commutativity of a ring R satisfying the polynomial identity xt[xn,y]yr = ±[x,ym]ys (resp. a;*[a;n,y]yr = ±ys[x, ym]), for all x,y € R, where m,n,r,s and t are some non-negative integers such that m > 0, n > 0, and m = nifn + i^l and m + + The main results of the present paper assert that a. semiprime ring R is commutative if (m,n,r,s,t) ^ (0,0,0,0,0) and commutativity of an associative ring R follows with property Q(m), for m > 1, n > 1, that is for all x,y G R, m[x,y] = 0 implies [x,y] = 0. It is also shown that the above results are true for s-unital rings. Finally, our results generalize some of the well-known commutativity theorems for rings (see [1, 2, 5, 10, 12, 15]).
29-45

JEL Codes:

REFERENCES

References: 

1. ABUJABAL, H. A. 'S. and PERIC, V., Commutativity of s-unital ring through a Streb result, Rad. Mat. 7 (1991), 73 - 92.
2. ABUJABAL, H. A. S. and PERIC, V., Commutativity theorems for s-unital ring, Mathematica Pannonica 4/2 (1993), 181-190.
3. BELL, H. E., On the power map and ring commutativity, Canad. Math. Bull. 21 (1978) 399 - 404
4. BELL, H. E., The identity (xy)n = xnyn : does it buy commutativity?, Math. Mag. 55 (1982), 165 - 170.
5. HERSTEIN, I. N., A generalization of a theorem of Jacobson, Amer. J. Math. 78 (1951), 756 - 762.
6. HERSTEIN, I. N., Topics in ring theory, Chicago University Press, Chicago (1989).
7. HIRANO, Y., KOBAYASHI, Y., and TOMINAGA, H., Some polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ. 24 (1982), 7 - 13.
8. JACOBSON, N., Structure of rings, Amer. Math. Soc. Colloq. Publ. (1964).
9. KEZLAN, T. P., A note on commutativity of semiprime Pi-rings, Math. Japon. 27 (1982), 267 - 268.
10. KHAN, M. A., Commutativity theorems for rings with constraints on commutators, J. Indian Math. Soc. 66 (1999), 113 - 124.
11. KOMATSU, H., A commutativity theorem for rings, Math. J. Okayama Univ. 26 (1984), 109 - 111.
12. PSOMOPOULES, E., Commutativity theorems for rings and groups with constraints on commutators, Internat J. Math, and Math. Sci. 7 (1984), 513 - 517
13. QUADRI, M. A. and KHAN, M. A., A commutativity theorem for left s-unital rings, Bull. Inst. Math. Acad. Sinica 15 (1987), 323 -327.
44
14. STREB, W., Zur struktur nichtkommutativer ringe, Math. J. Okayama Univ. 31 (1989), 135 - 140.
15. TOMINAGA, H.,
an
d YAQUB, A., A commutativity theorem for one sided s-unital ring, Math. J. Okayama Univ. 26 (1984), 125 - 128.

Thank you for copying data from http://www.arastirmax.com