Buradasınız

ROBUST REGRESYONLARIN TAHMİNCİLER ÜZERİNDEKİ ETKİLERİNİN ANALİZİ VE KLASİK YÖNTEMLERLE KARŞILAŞTIRILMASI

Journal Name:

Publication Year:

Key Words:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The beta coefficients were calculated by taking the ratios of monthly and weekly yields of 32 firms in process in retailing and food sectors of ISE. In order to do this, the two alternative methods; the ordinary least square and the least median square methods were used. Consequently, it is determined that monthly data has less deviation according to weekly data and in some stocks risk signals that are obtained from OLS and LMS changed direction. Besides, there have been differences in results that are obtained from weekly and monthly frequency.
Abstract (Original Language): 
İMKB'deperakende ve gıda sektöründe işlem gören 32 şirketin değerlerindeki aylık ve haftalık değişim oranları baz alınarak beta katsayıları hesaplanmıştır. Bunun için alternatif iki yöntem olan en küçük kareler ve en küçük ortanca kareler yöntemleri kullanılmıştır. Sonuç olarak aylık veriler haftalık verilere göre daha az sapmaya sahip olduğu ve bazı hisse senetlerinde EKK ve KOK'dan elde edilen risk sinyallerinin yön değiştirdiği belirlenmiştir. Ayrıca haftalık ve aylık frekanslara göre elde edilen sonuçlarda da farklılıklar oluşmuştur.
15-26

REFERENCES

References: 

Blumc, M. (1971). "On the Assessment of Risk," Journal of Finance, 26, 1-10.
Blume, M, (1975). "Betas and Their Regression Tendencies", Journal of Finance, 30, 785-95.
Dimson, E. (1979). "Risk Management When Shares are Subject to Infrequent Trading," Journal of Financial Economics, 7, 197-226.
Hampel, F. R. (1971). "A General Qualitative Definition of Robustness", Annals of Mathematical Statistics,42, 1887-1896.
Hodges, J.L. (1967). "Efficiency in Normal Samples and Tolerance of Extreme Values for Some Estimates of Location", Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, 163-168
Kim, D. (1993). "The Extent of Non-Stationarity of Beta," Review of Quantitative Finance and Accounting, 3, 241-54.
Küçükkocaoğlu Güray ve Arzdar Kiracı. (2003). "Güçlü Beta Hesaplamaları", VI. Ulusal Ekonometri ve İstatistik Sempozyumu.
Martin, D. R. and T. Simin. (1999). "Robust Estimation of Beta", University of Washington Working Paper.
Odabaşı Attila. (2003). "Sistematik Risk Tahmininde Getİrİ Aralığının Etkisi: İMKB'de Bir Uygulama", Uludağ Üniversitesi 1İBF Dergisi, 22 (1)
Önder A. Ö. (2001). "Least Median Squares: A Robust Regression Technique", Ege Akademik Bakış, 1(1), 185-191-
Önder A. Ö. and A. Zaman. (2005), "Robust Tests for Normality of Errors in Regression Models", Economics Letters, 86(1), 63-68.
Plackett, R.L. (1972). "The Discovery of the Method of Least Squares", Biometrika, 59, 239-251.
Rousseeuw, P., Daniels, B., and Leroy, A. (1984), Applying Robust Regression to Insurance," Insurance: Mathematics and Economics, 3, 67-72.
Rousseeuw, P.J. (1984), "Least Median of Squares Regression", Journal of the American Statistical Association, 79, 871-880
Rousseeuw, P.J., Leroy, A.M. (1987). Robust Regression and Outlier Detection, John Wiley&Sons, Canada.
Scholes, M., vc Williams, J. (1977). "Estimating Betas From Non-Synchronous Data," Journal of Financial Economics, 5, 309-327.
Shalit, H., and S. Yitzaki, (2001). "Estimating Beta." Working Paper, Department of Economics and Finance, Ben Gurion University.
Stigler, S. M. (1981). "Gauss and the Invention of Least Squares", Annals of Statistics, 9, 465­474.
Vasicek, O. (1973). "A Note on Using Cross-Sectional Information İn Bayesian Estimation of Security Betas," Journal of Finance, 28, 1233-1239.
Yeşilyurt, M. E. ve F. Yeşilyurt. (2007). "Farklı Regresyon Yöntemleri ile Beta Katsayısı Analizi", Atatürk Üniversitesi LİBF Dergisi, 21 (2), 26-42.

Thank you for copying data from http://www.arastirmax.com