Buradasınız

Toprak Faunası: Sınıflandırılması ve Besin Ağındaki Yeri

Soil Fauna: Classification and Status in Soil Food Web

Journal Name:

Publication Year:

Abstract (2. Language): 
Soil ecology; deals with primary production in soil, soil fauna and flora, litter decomposition, nutrient cycle, soil food web, soil biodiversity, and interrelations with soil processes. Organisms living in soil have vital importance on these processes, however, estimation of the impact of each organism is too difficult. Soil ecologists who are specially working on these processes separate the organisms in two simple units as "guild" and "functional groups" according to their roles on ecosystem processes such as food resource, dietary specializations, reproductive rates and defense strategies against predators or distribution in soil profile. Communities within functional groups connected each other's with the relations such as competition and hunting. Soil food web studies try to figure out the relations among these functional groups connected with each other's.
Abstract (Original Language): 
Toprak ekolojisi; toprak içerisindeki primer üretim, toprak flora ve faunası, ölüörtü ayrışması, besin döngüsü, toprak besin ağı, toprak biyoçeşitliliği ve bunların toprak süreçleriyle arasındaki ilişkileri araştırmaktadır. Toprak içerisinde yaşayan canlılar bu süreçlerde hayati rol oynarlar, ancak bu canlıların tek başlarına etkilerinin hesaplanması çok zordur. Bu süreçleri çalışan toprak ekologları, canlıları birlik ve fonksiyonel grup olarak iki basit birime ayırmaktadır. Toprak canlılarının oluşturduğu birlikler birimlere bölünür. Bu birimler beslenme kaynakları, beslenme şekilleri, üreme oranları, avcılara karşı savunma yöntemleri veya toprak profilindeki dağılımları gibi ekosistem süreçlerindeki rollerine göre fonksiyonel gruplara ayrılırlar. Fonksiyonel gruplar içerisindeki komüniteler rekabet ve avlanma gibi ilişkiler ile birbirlerine bağlıdır. Toprak besin ağı çalışmaları birbirine bağlı olan bu fonksiyonel gruplar arasındaki ilişkileri ortaya koymaya çalışmaktadır.
139-152

REFERENCES

References: 

Andre, H. M., Ducarme, X., and Lebrun, P., 2002. Soil biodiversity: myth, reality or conning? Oikos. 96: 3-24.
Ashwini, K.M. and K.R. Sridhar, 2005. Leaf litter preference and conversion by a saprophagous tropical pill millipede, Arthrosphaera magna Attems. Pedobiologia. 49: 307-316.
Bardgett, R.D., 2005. The Biology of Soils: A
Community and Ecosystem Approach. Oxford University Press, Oxford. Bardgett, R.D., W.D. Bowman, R. Kaufmann, and S.K. Schmidt, 2005. A temporal approach to linking aboveground and belowground ecology. TRENDS in Ecology and Evolution. 20: 634-641.
Barros, E., P. Curmi, V. Hallaire, A. Chauvel, and P. Lavelle, 2001. The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma. 100: 193-213.
Berg, B. and R. Laskowski, 2006. Litter Decomposition: a Guide to Carbon and Nutrient Turnover. Academic Press, USA.
Berg, B. and McClaugherty, 2008. Plant Litter, Decomposition, Humus Formation, Carbon Sequestration. 2.ed. Springer. Berlin.
Bird, S.B., R.N. Coulson, and R.F. Fisher, 2004.
Changes in soil and litter arthropod abundance following tree harvesting and site preparation in a loblolly pine (Pinus taeda L.) plantation.Forest Ecology and Management. 202: 195-208.
Blomqvist, M.M., H. Olff, M.B. Blaauw, T.
Bongers, and W.H. van der Putten, 2000.
Interactions between above- and belowground biota: importance for small-scale vegetation mosaics in a grassland ecosystem. Oikos. 90: 582-598.
Brussaard, L., M.M. Pulleman, E. Ouedraogo, A. Mando and J. Six, 2007. Soil fauna and soil in the fabric of the food web. Pedobiologia.
50: 447-462.
Brussaard. L., 1998. Soil fauna, guilds, functional groups and ecosystem precesses. Applied soil
Ecology. 9: 123-135. Cardon, Z.G. and J.L. Whitbeck, 2007. The The
Rhizosphere An Ecological Perspective, Elsevier Inc., USA.
Chamberlain, P.M., N.P. McNamara, J. Chaplow, A.W. Stott and H.IJ. Black,
2006. Translocation of surface litter carbon into soil by Collembola. Soil Biology & Biochemistry. 38: 2655-2664.
Chapin, F.S., P.A. Matson and H.A. Mooney, 2002. Principles of Terrestrial Ecosystem Ecology. Springer. New York.
Cole, L. and R.D. Bardgett, 2002. Soil animals, microbial interactions and nutrient cycling. In: Lal, R. (Ed.), Encyclopedia of Soil Science. Marcel Dekker, New York, pp. 72¬75.
Cole, L., M.A. Bradford, P.J.A. Shaw and R.D.
Bardgett, 2006. The abundance, richness and functional role of soil meso and macrofauna in temperate grassland - A case study. Applied Soil Ecology. 33: 186-198. Coleman, D.C., Jr. Crossley and D.A. Hendrix, P.F., 2004. Fundamentals of Soil Ecology, second ed. Elsevier Academic Press.
Cortet J., A. Gomot-De Vauflery, N. Poinsot-Balaguera, L. Gomot, C. Texier and D. Cluzeau, 1999. The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology. 35: 115¬134.
Curry, J.P. and O. Schmidt, 2007. The feeding
ecology of earthworms - A review. Pedobiologia. 50: 463-477.
Curtis, T.P., W.T. Sloan and J.W. Scannell, 2002.
Estimating prokaryotic diversity and its
limits. PNAS. 99: 10494-10499. Çakır, M and E. Makineci, 2009.Toprak mikro-eklembacaklılarının fonksiyonel yapıları ve ölü örtü ayrışmasına etkileri-Belgrad ormanı örneği. Bartın Orman Fakültesi Dergisi. 1:
135-140.
Darwin, C., 1881. The formation of vegetable mould, through the action of worms, with observation on their habits. John Murray, London.
Dauber, J. and V. Wolters, 2000. Microbial activity and functional diversity in the
mound
s of the three different ant species. Soil Biology and Biochemistry. 32: 93-99.
Dauber, J., D. Schroeter and V. Wolters, 2001.
Species specific effects of ants on microbial activity and N-availability in the soil of an
old-field. Eur. J. Soil Biol. 37: 259-261.
Dittmer, S. and S. Schrader, 2000. Longterm effects of soil compaction and tillage on Collembola and straw decomposition in arable soil. Pedobiologia. 44: 527-538.
149
Meriç Çakır,
Ende
r Makineci
Doblas-Miranda, E., F. Sanchez-Pinero and A. Gonzales-Megias, 2007. Soil macroinverta-brate fauna of a Mediterranean arid system: composition and temporal changes in the assemblega. Soil Biology and Biochemistry,
39, 1916-1925.
Dunxiao, H., H. Chunru, X. Yaling, H. Banwang,
H. Liyuan and M.G. Paoletti, 1999.
Relationship between soil arthropods and soil properties in a sburb of Qianjiang City, Hubei, China. Critical Reviews in Plant
Sciences. 18: 467-473.
Eaton, R.J., M. Barbercheck, M. Budorf and W. Smith, 2004. Effects of organic matter removal, soilcompaction, and vegetation control on Collembolan populations. Pedobiologia. 48: 121-128.
Endlweber, K. and S. Scheu, 2006. Effects of
Collembola on root properties of two competing ruderal plant species. Soil Biology
&
Biochemistry. 38: 2025-2031. Faber, J.H., 1991. Functional classification of soil fauna: a new approach.Oikos. 62: 110-117.
Folgarait, P.J., S. Perelman, N. Gorosito and R. Pizzio, 2002. Effects of Camponotus punctulatus ants on plant community composition and soil properties across land-use histories. Plant Ecol. 163: 1-13.
Frey, B., J. Kremer, A. Rüdt, S. Sciacca, D. Matthies and P. Lüscher,
2009
. Compaction of forest soils with heavy logging machinery affects soil bacterialcommunity structure. European Journal of Soil Biology. 45: 312¬320.
Hattenschwiler, S. and D. Bretscher, 2001. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Global Cahnge Biology.
7: 565-579.
Heneghan, L., D.C. Coleman, X. Zou, Jr, D.A.
Crossley and B.L. Haines, 1998. Soil
microarthropod community structure and litter decomposition dynamics: A study of tropical and temperate sites. Applied Soil
Ecology. 9: 33-38. Hiski, T. and H. Takeda, 2008. Soil
microarthropods alter the growth and morphology of fungi and fine roots of
Chamaecyparis obtusa. Pedobiologia. 52:
97-110.
Hooper, D.U., F.S. Chapin, J.J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. Lawton, D.M. Lodge, M. Loreau, S. Naeem, B. Schmid,
Seta" la", H., A.J. Symstad, J. Vandermeer
and D.A. Wardle, 2005. Effects of
biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs. 75: 3-35. Hopkin, S.P., 1997. Biology of springtails, Oxford university press, New York.
Jones, C.G., J.H. Lawton and M. Shachak, 1994.
Organisms as ecosystem engineers. Oikos.
69: 373-386.
Jones, C.G., J.H. Lawton and M. Shachak, 1997.
Positive and negative effects of organisms as physical ecosystem engineers. Ecology. 7:
1946-1957.
Joo, S.J., M.H. Yim and K. Nakane, 2003. Leaf
litter decomposition in relation to dynamics of soil mesofauna in litter boxes with different mesh sizes in a Quercus serrata forest. Appl. For. Sci. 12: 109-116.
Joo, S.J., M.H. Yim and K. Nakane, 2006.
Contribution of microarthropods to the
decompositio
n of needle litter in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Forest Ecology and Management.
234: 192-198.
Jouquet, P., N. Boulain, J. Gignoux and M. Lepage, 2004. Association between subterranean termites and grasses in a West African savanna: spatial pattern analysis shows a significant role for Odontotermes n. pauperans. Applied Soil Ecology. 97: 99-107.
Jouquet, P., J. Dauber, J. Lagerlöf, P. Lavelle and M. Lepage, 2006. Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Applied
Soil Ecology. 32: 153-164.
Kampichler, C., J. Rolschewski, D.P. Donnelly and L. Boddy, 2004. Collembolan grazing affects the growth strategy of the cord-forming fungus Hypholoma fasciculare. Soil Biology & Biochemistry. 36: 591-599.
Kaneko, N., M.A. McLean and D. Parkinson, 1998. Do mites and Collembola affect pine litter fungal biomass and microbial respiration?. Applied Soil Ecology. 9: 209¬213.
Kreuzer, K., M. Bonkowski, R. Langel and S. Scheu, 2004. Decomposer animals (Lumbricidae, Collembola) and organic matter distribution affect the performance of Lolium perenne (Poaceae) and Trifolium repens (Fabaceae). Soil Biology &
Biochemistry. 36: 2005-2011.
150
Toprak Faunası: Sınıflandırılması ve Besin Ağındaki Yeri
Kristiansen, S.M., W. Amelung and W. Zech, 2001. Phosphorus forms as affected by abandoned anthills (Formica polyctena Fo'rster) in forest soils: sequential extraction and liquid-state 31P-NMR spectroscopy. J.
Plant Nutr. Soil Sc. 164: 49-55.
Kühnelt,
W.
, 1961. Soil Biology. Faber and faber limited, London.
Lavelle, P. and A.V. Spain, 2001. Soil Ecology.
Kluwer Academic Publishers, Netherlands. Lavelle, P., D. Bignell, M. Lepage, V. Wolters, P. Roger, P. Ineson, O.W. Heal and S. Dhillion, 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Biology. 33:
159-193.
Lavelle, P., T. Decaens, M. Aubert, S. Barot, M. Blouin, F. Bureau, P. Margerie, P. Mora, and J.P. Rossi, 2006. Soil invertebrates and ecosystem services. European Journal of
Biology. 42: 3-15.
Longcore T., 2003. Terrestrial arthropods as indicators of ecological restoration success in coastal sage scrub (California, U.S.A.). Restoration Ecology. 11: 397-409.
Mittelbach, G.G., C.F. Steiner, S.M. Scheiner,
K.L. Gross, H.L. Reynolds and R.B. Waide, 2001. What is the observed relationship between species richness and
productivity? Ecology. 82: 2381-2396.
Moore, J.C., D.E. Walter and H.W. Hunt, 1988.
Arthropod regulation of micro and mesobiota in below-ground detrital food webs. Ann. Rev. Entomol. 33: 419-439. Nakamura A., H. Proctor and C.P. Catterall 2003. Using soil and litter arthropods to assess the state of rainforest restoration. Ecological Management & Restoration. 4:
20-28.
Pieper, S. and G. Weigmann, 2008. Interactions between isopod and collembolans modulate the mobilization and transport of nutrient from urban soils. Applied Soil Ecology. 39:
109-126.
Ponsard, S. and R. Arditi, 2000. What can stable isotopes (515N and 513C) tell about the food web of soil macro-invertebrates? Ecology.
81: 852-864.
Quadros, A.F., Y. Caubet and P.B. Araujo, 2009.
Life history comparison of two terrestrial isopods in relation to habitat specialization.
Acta Oecologica. 35: 243-249.
Reynolds, B.C., J. Hamel, J. Isbanioly, L. Klausman and K.K. Moorhead, 2007. From forest to fen: Microarthropod abundance and litter decomposition in a southern Appalachian floodplain/fen complex. Pedobilogia. 51: 273¬280.
Root, R.B., 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecol. Mon. 37:
317-350.
Römbke
J.
, J.-P. Sousa, T. Schouten and F.
Riepertd, 2006. Monitoring of soil organisms: a set of standardized field methods proposed by ISO. European Journal
of Soil Biology. 42: 61-64. Ruiter, P.C.de. and J.C. Moore, 2004. Food-Web
Interactions. Encyclopedia of soils in environment. (Hiller, D., Rosenzweig, C., Powlson, D., Scow, K., Singer, M. ve Sparks, ed.), 59-67. Academic Press, Volume 2,
USA.
Rusek, J., 1998. Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity and Conservation. 7: 1207-1219.
Scheu, S. and M. Falca, 2000. The soil food web of
two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of macro- and a mesofauna dominated community. Oecologia. 123: 285¬296.
Scheu, S., 2002. The soil food web: structure and
persvectives. European Journal of Soil
Biology. 38: 11-20. Schlesinger, W.H. and J.A. Andrews, 2000. Soil respiration and the global carbon cycle. Biogeochemistry. 48: 7-20.
Seeber, J., S. Scheu and M. Meyer, 2006. Effects
of macro-decomposers on litter decomposi¬tion and soil properties in alpine pastureland: A mesocosm experiment. Applied Soil
Ecology. 34: 168-175.
Setala, H. and V. Huhta, 1990. Evaluation of the soil fauna impact on decomposition in a simulated coniferous forest soil. Biology and
Fertility of Soil. 10: 163-169. Smith, V.C. and M.A. Bradford, 2003. Litter
quality impacts on grassland litter decomposition are differently dependent on soil fauna across time. Applied Soil Ecology.
24: 197-203.
Swift, M.J., O.W. Heal and J.M. Anderson, 1979.
Decomposition in terrestrial ecosystems.
Blackwell, Oxford. 372 pp.
151
Meriç Çakır,
Ende
r Makineci
Taylor, A.R., A. Pflug, D. Schröter and V. arthropod communities, Applied Soil
Wolters, 2010. Impact of microarthropod Ecology. 9: 429-437.
biomass on the composition of the soil fauna Walling, S.Z. and C.A. Zabinski, 2006. Defoliation
community and ecosystem processes. effects on arbuscular mycorrhizae and plant
European Journal of Soil Biology. 46: 80-86. growth. Applied Soil Ecology. 32: 111-117.
Torsvik, V., L. Ovreas and T.F. Thingstad, 2002. Wang, S., H. Ruan and B. Wang. 2009. Effects of
Prokaryotic Diversity—Magnitude, Dyna- soil microarthropods on plant litter
mics, and Controlling Factors. Science. 296: decomposition acrossan elevation gradient in
1064-1066. the Wuyi Mountains. Soil Biology and
Toyota, A., N. Kaneko and M.T. Ito, 2006. Soil Biochemistry. 41: 891-897.
ecosystem engineering by the train millipede Wardle, D.A., 2002. Communities and Ecosystems:
Parafontaria laminata in a Japanese larch Linking the Aboveground and Belowground
forest. Soil Biology & Biochemistry. 38: Components. Princeton University Press,
1840-1850. Princeton.
Uchida, T., N. Kaneko, M.T. Ito, K. Futagami, T. Wardle, D.A., R.D. Bardgett, J.N. Klironomos, H.
Sasaki and A. Sumigoto, 2004. Analysis of Setala, W.H. Putten and D.H. Wall, 2004.
the feding ecology of earthworms Ecological Linkages Between Aboveground
(Megascolecidae) in Japanese forests using and Belowground Biota. Science. 304: 1629-
gut content fractionation and e>15N and e>13C 1633.
stable isotope natural abundances. Applied Wiwatwitaya, D. and H. Takeda, 2005. Seasonal
Soil Ecology. 27: 153-163. changes in soil arthropod abundance in the
Van Straalen, N.M., 1997. Community Structure of dry evergreen forest of north-east Thailand,
soil arthropods as a bioindicator of soil with special reference to collembolan
health. In: Pankhurst, C.E., Doube, B.M. ve communities. Ecological Research. 20: 59-
Gupta, V.V.S.R. (Ed), Biological indicators 70.
of soil health. Cab International, UK, pp. Wolters, V., 2001. Biodiversity of soil animals and
235-264. its function. European Journal of Soil
Van Straalen, N.M., 1998. Evaluation of Biology. 37: 221-227.
bioindicator systems derived from soil

Thank you for copying data from http://www.arastirmax.com