[1] B. S. Yarman, “Broadband Networks”, Wiley
Encyclopedia of Electrical and Electronics Engineering,
1999.
M. Şengül/ IU-JEEE Vol. 12(2), (2012), 1511-1515
1515
[2] D. C. Youla, “A new theory of broadband matching”, IEEE Trans. Circuit Theory, vol.11, pp.30-50, 1964.
[3] R. M. Fano, “Theoretical limitations on the broadband matching of arbitrary impedances”, J. Franklin Inst., vol. 249, pp.57-83, 1950.
[4] Awr: Microwave office of applied wave research inc. www.appwave.com.
[5] Edl/ansoft designer of ansoft corp. www.ansoft.com/products.cfm.
[6] Ads of agilent techologies. www.home.agilent.com.
[7] B. S. Yarman, M. Şengül, A. Kılınç, “Design of practical matching networks with lumped-elements via modeling” IEEE Trans. on Circuits and Systems I: Regular Papers, vol.54(8), pp.1829-37, 2007.
[8] W. K. Chen, “Passive and active filters”, Wiley, New York, 1986.
[9] W. C. Yengst, “Procedures of Modern Network Synthesis”, The Macmillan Company, New York, 1964.
[10] V. Belevitch, “Classical Network Theory”, Holden Day, San Francisco, 1968.
[11] A. Aksen, “Design of lossless two-port with mixed, lumped and distributed elements for broadband matching”, Dissertation, Bochum, Germany: Ruhr University, 1994.
[12] M. Şengül, Reflectance-based foster impedance data modeling, Frequenz Journal of RF Engineering and Telecommunications, vol.61(7-8), pp.194-6, 2007.
[13] J. W. Nilsson, “Electric Circuits”, Addison-Wesley, New York, 1993.
[14] M. Şengül, “Broadband impedance matching via lossless unsymmetrical lattice networks”, Int. J. Electron. Commun. (AEU), vol: 66(1), pp: 76-79, Jan. 2012.
Thank you for copying data from http://www.arastirmax.com