Buradasınız

THE PERFORMANCE ANALYSIS OF STFT-ANFIS CLASSIFICATION METHOD ON PULSED RADAR TARGET CATEGORIZATION

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper, a pattern recognition system is developed for automatic classification of the radar target signals. Feature extraction is an important subset of the pattern recognition system. For feature extraction is used Short Term Fourier Transform (STFT) time-frequency distribution of the pulse radar target signals. Adaptive Network Based Fuzzy Inference System (ANFIS) classifier is used at classifier part of the pattern recognition system. Radar signals are obtained from pulse radar system for various targets. The classifier performance is evaluated according to the proposal method.
97-105

REFERENCES

References: 

[1]. Mahafza, B., R., Radar Systems Analysis and Design Using, Chapman& Hall/CRC, United States of America, p.p.529, 2000.
[2]. J. Ahern, G. Y. Delisle, etc., Radar, Lab-Volt Ltd., vol. 1, p.p. 4-7 ,Canada, 1989.
Engin AVCI, Ibrahim TURKOGLU, Mustafa POYRAZ
The Performance Analysis Of Stft-Anfiıs Classification Method On Pulsed Radar Target Categorization
104
[3]. Turkoglu, I., Hanbay D., “Artificial Neural Network and An Intelligent DTMF Signal Code Decoder on Based FFT” , 10. Signal Processing and Comunication Applications (SİU2002) , p.p. 394-399 , Pamukkale/Denizli, Turkey, 2002.
[4]. Choi, I., S., Kim, H., T., “Efficient feature Extraction from time-frequency analysis of transient response for target identification”, Microwave and Optical Technology Letters Vol. 26, No: 6, p.p. 403-407, 2000.
[5]. Madrid J.J. M., Corredera J. R. C., Vela G. M., “A neural network approach to Doppler based target classification”, Radar 92. International Conference, pp. 450–453, Brighton, England, 1992.
[6]. Swiatnicki Z., Semklo R., “The artificialintelligence tools utilization in radar signal processing”, 12th International Conference on Microwaves and Radar (MIKON '98), vol. 3, pp. 799 –803, Krakow, Poland, 1998.
[7]. Jakubiak A., Arabas J., Grabczak K., etc., “Radar clutter classification using Kohonen neural network”, Radar 97 (Conf. Publ. No. 449), pp. 185 –188, Edinburgh , UK, 1997.
[8]. Turkoglu, I., Arslan, A. I., Erdoğan, “An expert system for diagnose of the heart valve diseases” , Expert systems with applications , (2002), 23(3) , 229-236, 2002.
[9]. Schreier, P., J., Scharf , L., L., “Stochastic Time-Frequency Analysis Using the Analytic Signal: Why the Complementary Distribution Matterts”, IEEE Transactions on Sign Processing, (2003), Vol.51, No.12.p.p. 3071-3079, 2003.
[10]. Stankovic, L., “On the Realization of the Polynomial Wigner-Ville Distribution for Multicomponent Signals”, IEEE Signal Processing Letters, Vol. 5, No. 7, 1998.
[11]. Beastall W. D.,” Recognition of radar signals by neural network”, First IEE International Conference on Artificial Neural Networks, (Conf. Publ. No. 313), pp.139-142, London, UK, 1989.
[12]. Application of pattern recognition techniques for early warning radar, Nasa Technical Reports, AD-A299735, 1995.
[13]. Guangyi C., Applications of wavelet transforms in pattern recognition and de-noising, Concordia University (Canada), 1999.
[14]. Sowelam S.M., Tewfik A.H., “Waveform selection in radar target classification”, IEEE Transactions on Information Theory, vol. 46, pp. 1014 –1029, 2000.
[15]. Turkoğlu I., Arslan A., “Optimization of the Performance of Neural Network Based Pattern Recognition Classifiers with Distributed Systems”, IEEE Computer Society, International Conference on Parallel and Engin AVCI, Ibrahim TURKOGLU, Mustafa POYRAZ
The Performance Analysis Of Stft-Anfiıs Classification Method On Pulsed Radar Target Categorization
105
Distributed Systems (ICPADS’2001), pp. 379-382, Kyong Ju, Korea, Jun. 26-29, 2001.
[16]. Passino, K., M., and Yurkovich, S., Fuzzy Control, Adisson Wesley Longman, Inc., California, pp.259-267, 1998.
[17]. Avci, E., Turkoglu, I., “Modeling of Tunnel Diode by Adaptive-Network-Based Fuzzy Inference System” , International Journal of Computational Intelligence , ISSN 1304-2386, (2003), Volume:1, Number:1 , p.p. 231-233.
[18]. Kosko, B., Neural Networks and Fuzzy Systems, A Dynamical Systems Approach, Englewood Ciffs., NJ: Prentice Hall, 1991.
[19]. Jang, J. S. R., Sun, C. T., Neuro-Fuzzy Modeling and Control, proceedings of the IEEE, vol. 83, No. 3, 1995.
[20]. Jang, J. S. R., ANFIS: Adaptive network-based fuzzy inference systems,IEEE, Trans. Syst., Man. and Cybern., vol. 23, pp. 665-685, 1993.

Thank you for copying data from http://www.arastirmax.com