Buradasınız

PESİMUM REAKTİF AGREGA İÇERİĞİNİN ALKALİ-SİLİKA REAKSİYONUNA ETKİSİNİN DENEYSEL YÖNTEMLERLE ARAŞTIRILMASI

THE INVESTIGATION OF EFFECTS OF PESSIMUM REACTIVE AGGREGATE CONTENT ON ALKALI-SILICA REACTION WITH EXPERIMENTAL METHODS

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The reactive aggregate content in concrete or mortar affects the expansion generated from alkali silica reaction (ASR). In this study, to investigate the reactive aggregate percentage in the bulk of the aggregate causing maximum expansion (were known as Pessimum ratio in literature), a series of laboratory tests was carried out and their results were compared. Five different reactive aggregate types such as opal, chert, chalcedony, andesite and basalt were identified through petrographical examination. Their reactivity was determined by gel pat and chemical tests, and some additional tests were performed to determine the physical and mechanical properties of these reactive aggregate. In the laboratory, mortar bars having different reactive aggregates percentages were prepared and the amount of reactive aggregate causing the maximum expansion of the mortar bars was determined. When the bulk of aggregate contains 20% opal which is the aggregate with the highest reactivity, maximum expansion was observed. The Pessimum reactive aggregate content for chert, chalcedony, andesite and basalt were determined as 40%, 50%, 80% and 100%, respectively. At the end of accelerated mortar bar tests, thin sections for fluorescent microscopy studies were prepared using the cubic samples extracted from mortar bars. As a result of the fluorescent microscopy studies on thin sections, the maximum silica gel sourced from ASR was observed if the reactive aggregate content was around Pessimum ratio. This is the second important result obtained from microscopy studies that distinct alkali silica gels developments were observed in different reactive aggregates. However, while silica gel rims around opal were observed, silica gels throughout micro cracks in chert were evident. In chalcedony aggregates, fibrous type alkali silica gel developments were observed.
Abstract (Original Language): 
Harç veya beton içinde kullanılan agregaların amorf silis içeriği, alkali silika reaksiyonu nedeni ile meydana gelen hacimsel genleşme miktarını etkilemektedir. Bu çalışmada, harçta en fazla genleşmeye neden olan ve literatürde pesimum oranı olarak adlandırılan tüm agrega içindeki reaktif agrega oranını araştırmak için çeşitli deneyler yapılmış ve bunların sonuçları birbirleriyle karşılaştırılmıştır. Petrografik çalışmalarla tanımlanan, mekanik ve fiziksel özellikleri belirlenen opal yumrusu, çört, kalsedon yumrusu, andezit ve bazalt türü beş farklı reaktif agreganın alkali reaktiviteleri jel pastası (Jel-pat) ve kimyasal yöntemle saptanmıştır. Reaktif agregalar farklı oranlarda tüm agrega içine katılarak harç çubukları hazırlanmış ve hızlandırılmış harç çubuğu deneyleri gerçekleştirilmiştir. En fazla boyca uzamanın meydana geldiği pesimum reaktif agrega oranı belirlenmiştir. Çalışma kapsamı içinde yapılan deneylerde diğerlerine göre daha yüksek alkali reaktivitesi gösteren opal yumrusu, tüm agrega içinde %20 oranında bulunduğunda en fazla genleşme meydana gelmektedir. Çört, kalsedon yumrusu, andezit ve bazaltın pesimum oranları ise sırasıyla %40, %50, %80 ve %100 olarak belirlenmiştir. Hızlandırılmış harç çubuğu deneyleri sonunda, harç çubuklarından küp örnekler alınmış ve bunlardan floresans mikroskop inceleme tekniğine uygun ince kesitler hazırlanmıştır. İnce kesitler üzerinde yapılan floresans mikroskop çalışmaları sonucunda, reaktif agregalar çevresinde en fazla alkali silika jel gelişiminin pesimum oranlarında meydana geldiği gözlemlenmiştir. Mikroskop incelemeleri sırasında gözlemlenen diğer bir olgu da, reaktif agregaların çeşidine göre alkali silika jel gelişimlerinin farklı olmasıdır. Opal türü agregalar çevresinde haleleler şeklinde alkali silika jel gelişirken, çörtte kılcal çatlaklar boyunca, kalsedonda ise lif lif ayrılmalar şeklinde alkali silika jel gelişimleri saptanmıştır.
119-128

REFERENCES

References: 

Al-Dabbagh, I., 1986, Flint characteristics and alkalisilica
reactivity, Proceedings of the 7th International
Conference on Alkali-Aggregate Reaction in
Concrete, Grattan-Bellew, P.E. (ed.), Ottawa,
Canada, 413-417.
ASTM C-289-94, 1997, (American Society for Testing
and Materials), Standard Test Method for Potential
Alkali Reactivity of Aggregates (Chemical Method),
Annual Book of ASTM Standards; Section Concrete
and Mineral Aggregates, Philadelphia, 04.02, 157-
163.
ASTM C-1260-94, 1997, (American Society for
Testing and Materials), Standard Test Method for
Potential Alkali Reactivity of Aggregates (Mortar
Bar Method), Annual Book of ASTM Standards;
Section Concrete and Mineral Aggregates,
Philadelphia, 04.08, 650-653.
Batic, O., Maiza, P., Sota, J., 1994, Alkali silica
reaction in basaltic rocks NBRI method, Cement and
Concrete Research, 24(7), 1317-1326.
Binal, A., 2002, Beton Agregalarında Alkali Silika
Reaksiyonu Etkisinin Belirlenmesi için Harç
Prizması Deneyi Tasarımı ve Uygulanması, Doktora
Tezi (yayımlanmamış), Hacettepe Üniversitesi,
Ankara, 222p.
Diamond, S., 1976, A review of alkali-silica reaction
and expansion mechanisms, Reactive aggregates,
Cement and Concrete Research, 6, 549-560.
Erkan, Y., 1999, Mağmatik Petrografi, Hacettepe
Üniversitesi, Mühendislik Fakültesi Yayınları,
Yayın No:40, Ankara, 183s.
French, W.J., 1992, The characterization of potentially
reactive aggregates, Proceedings of the 9th
Intenational Conference on Alkali-Aggregate
Reaction in Concrete, 338-346.
Glasser, F.P., 1992, Chemistry of the alkali-aggregate
reaction, Congress on Alkali-Silica Reaction in
Concrete, Swamy, R.N. (eds.), New York, USA, 30-
53.
Glasser, L.S.D., Kataoka, N., 1981, The chemistry of
“alkali-aggregate” reaction, Cement and Concrete
Research, 11, 1-9.Gündoğdu, N., 1982, Neojen Yaşlı Bigadiç Sedimanter
Baseninin Jeolojik Mineralojik ve Jeokimyasal
İncelenmesi, Doktora Tezi, H.Ü. Jeoloji Müh. Böl.,
Ankara.
Hamilton, W.R., Woolley A.R., Bishop, A.C., 1976,
The Hamlyn Guide to Minerals, Rocks and Fossils,
The Hamlyn Publishing Group Ltd., Italy, 250s.
Helmuth, R., Stark, D., 1992, Alkali-silica reactivity
mechanism, Materials Science of Concrete, The
American Ceramic Society, Ohio, USA, 3, 131-208.
Hobbs, D.W., 1978, Expansion of concrete due to
alkali-silica reaction: An explanation, Magazine of
Concrete Research, 30(105), 215-220.
Hobbs, D.W., 1981, The alkali-silica reaction - a model
for predicting expansion in mortar, Magazine of
Concrete Research, 33(117), 208-219
Ineson, P.R., 1990, Siliceous components in
aggregates, Cement and Concrete Composites,
12(3), 185-190.
Jakobsen, U., 1998, Understanding The Features
Observed In Concrete Using Various Fluorescence
Impregnation Techniques, Bull. of Ramboll,
Denmark, No. 70, 20 s.
Jones, F.E., Tarleton, R.D., 1958, Experience with
some forms of rapid and accelerated tests for alkaliaggregate
reactivity: Recommended test procedures,
Part VI. Alkali-Aggregate Interaction, Department
of Scientific and Industrial Research, Research
Paper No:25, 46s.
Katayama, T., 2000, Alkali-aggregate reaction in the
vicinity of Izmir, Western Turkey, 11th International
Conference on Alkali-Aggregate Reaction, Bérubé,
M.A., Fournier, B., Durand, B. (eds.), Quebec,
Canada, 365-374.
Katayama, T., Kaneshige, Y., 1986, Diagenetic
changes in potential alkali-aggregate reactivity of
volcanic rocks in Japan-A geological interpretation,
Proceedings of the 7th International Conference on
Alkali-Aggregate Reaction, P.E., Grattan-Bellew
(ed.), Ottawa, Canada, 489-493.
McConnel, D., Mielenz, R.C., Holland, W.Y.,
Greene, K.T., 1947, Cement-aggregate reaction in
concrete, Proceedings American Society for Testing
Materials, 44, 93-128.
Michel, B., Gnagne, C., Thiebaut, J., Wackenheim,
C., Maurin, B., 2000, Flint reactivity, 11th
International Conference on Alkali-Aggregate
Reaction, Bérubé, M.A., Fournier, B., Durand, B.
(eds.), Ottawa, Canada, 71-80.
Mizumoto, Y., Kosa, K., Ono, K., Nakano, K., 1986,
Study on cracking damage of a concrete structure
due to alkali-silica reaction, Proceedings of the 7th
International Conference on Alkali-Aggregate
Reaction, P.E., Grettan-Bellew (ed.), Ottawa,
Canada, 204-209.
Nixon, P.J., Page, C.L., Hardcastle, J., Canham, I.,
Pettifer, K., 1989, Chemical studies of alkali-silica
reaction in concrete with different flint contents, In
Proc. 8th Int. Conf. on Alkali-Aggregate Reaction,
Kyoto, 495-499.
Poole, A.B., 1992, Introduction to alkali-aggregate
reaction concrete, Congress on Alkali-Silica
Reaction in Concrete, Swamy, R.N. (eds.), New
York, USA, 1-29.
Shayan, A., Diggins ,R., Ritchie, D.F., Westgate, P.,
1986, Evaluation of western australian aggregates
for alkali-reactivity in concrete, In Proc. 7th Int.
Conf. on Alkali-Aggregate Reaction, Ottawa,
Canada, 247-257.
Shrimer, F. H., Ooi, O., Gerry, W. J., 2000, Control
of alkali-aggregate reactivity, Pointe Seraphine
Berth improvements, St. Lucia, , 11th International
Conference on Alkali-Aggregate Reaction, Bérubé,
M.A., Fournier, B., Durand, B. (eds.), Quebec,
Canada, 473-482.
Stanton, T.E., Portep, O.J., Meder, L.C., Nicol A.,
1942, California experience with the expansion of
concrete through reaction between cement and
aggregates, ACI Journal, 38(3), 209-235.
Swamy, R.N., 1990, The Alkali-Silica Reaction in
Concrete, Thomson Litho Ltd., Scotland, UK.
Swamy, R.N., 1992, Alkali-Aggregate Reactions in
Concrete: Material and Structural Implications,
Sciences in Concrete Technology, Malhotra, V.M.
(eds.), Ottawa, Canada, 533-581.
Taylor, G.D., 1991, Construction Materials, Longman
Scientific & Technical Publications, London, Great
Britain, 527 s.
Tordoff, M.A., 1990, Assesment of Prestressed
Concrete Bridges Suffering from Alkali-Silica
Reaction, Cement and Concrete Composites, 12(3),
203-210.
Wen, H.X., 1998, Alkali Aggregate Reaction in
Concrete, Lecture Notes, Civil Engng. Dept., Hong
Kong Unv, 20s.
West, G., 1996, Alkali Aggregate Reaction in Concrete
Roads and Bridges, Thomas Telford, UK, 163s.

Thank you for copying data from http://www.arastirmax.com