Buradasınız

OYMAPINAR BARAJI TETİKLENMİŞ DEPREMSELLİĞİ VE DEPREM KARAKTERİSTİKLERİNİN İNCELENMESİ

INDUCUED SEISMICTY OF OYMAPINAR DAM AND INVERSTIGATION OF EARTHQUAKE CHARACTERISTICS

Journal Name:

Publication Year:

Abstract (2. Language): 
The earthquakes referred as reservoir-associated earthquakes in dams are induced activities. In our country, there are 617 constructed dams and 68 under-construction dams and hydroelectric power plants, which are administered by The General Directorate of State Hydrolicworks (DSI). Within the scope of this study, the earthquakes of Oymapinar Dam (Antalya) which is a sample of the constructed one, is investigated. Earthquake and water level data of the dam have been obtained from General Directorate of DSI. In this study, the seismic activity before water loading (STO) and after water loading (STS) of Oymapinar Dam are compared. Furthermore, earthquake characteristics which are the b-values of magnitude-frequency distribution, relationships (M0-Mj, Mj/M0) between the magnitudes of the mainshock (M0) and the largest aftershock (Mj), using the Modified Omori Law, p-values that are temporal decay rate of the foreshocks and aftershocks are analyzed. The earthquakes in the Oymapinar Dam area are investigated for three different states in the STS period between the dates 29.05.1984-08.05.1986. In general, the b-values are low for the foreshocks and high for the aftershocks. This result is coherent with the findings of Berg (1968) and Rastogi et al. (1997). However, since overall deduced b- values are lower than the value of 1.0, they are not in coherence with the findings of Gupta and Rastogi (1976). In respect to the inverse proportion between M0-M1 and M1/M0 values is consistent with the proposals of Papazachos et al. (1967), Chaudhury and Srivastava (1973), Rastogi et al. (1995; 1997). The p-values are generally low and seismicity characteristics in the region do not obey the Modified Omori Law.
Abstract (Original Language): 
Rezervuar kaynaklı olarak adlandırılan baraj depremleri tetiklenmiş deprem türlerindendir. Ülkemizde Devlet Su İşleri (DSİ) tarafından yapımı tamamlanmış olan 617 baraj ve 68 yapım aşamasında olan baraj ve hidroelektrik santral vardır. Çalışma kapsamında, ülkemizde yapımı tamamlanmış barajlardan olan Oymapınar Barajı (Antalya)'nın depremleri incelenmiştir. Baraja ait deprem ve su seviyesi verileri DSİ Genel Müdürlüğü'nden sağlanmıştır. Çalışmada, Oymapınar Barajı'nın su tutma öncesi (STO) ve su tutma sonrası (STS) depremsellikleri karşılaştırılmıştır. Ayrıca; STS dönem içindeki deprem karakteristiklerini ortaya koyan magnitüd-frekans dağılımlarının b değerleri; ana şok magnitüdü (M0) ve en büyük artçı şok magnitüdü (M1) arasındaki ilişki (M0-M1, M1/M0); Değiştirilmiş Omori Yasası kullanılarak öncü şok ve artçı şokların zamansal azalım oranı olan p değerleri incelenmiştir. Oymapınar barajı depremleri STS dönemi içinde 29.05.1984-08.05.1986 tarihleri arasında üç farklı durumda incelenmiştir. Genellikle öncü şoklarda düşük b değerleri, artçı şoklarda ise yüksek b değerleri bulunmuştur. Bu durum, Berg (1968), Rastogi ve diğ. (1997)'nin bulgularıyla uyumludur. Ancak elde edilen tüm b değerleri 1.0'dan küçük bulunduğundan Gupta ve Rastogi (1976)'nın bulgularıyla uyum göstermemektedir. M0-M1 ve M1/M0 değerleri arasında ters orantı olması Papazachos ve diğ. (1967), Chaudhury ve Srivastava (1973), Rastogi ve diğ. (1995; 1997)'nin önerilerini desteklemektedir. Bölgedeki p değerleri ise genellikle düşüktür ve deprem etkinliği karakter olarak Değiştirilmiş Omori Yasasını sağlamamaktadır.
49-66

REFERENCES

References: 

Assumpçao, M., Marza, V., Barros, L., Chimpliganond, C., Soares, E.J., Carvalho, J., Caixeta, D., Amorim, A., Cabral, E., 2002,

Reservoir induced seismicity in Brazil, Pure and Appl. Geophs., 159, 597-612.

Bath, M., 1965, Lateral inhomogeneities in the upper mantle, Tectonophsics, vol: 2,483-514.

Berg, E., 1968, Relation between earthquake foreshock stress and main shocks, Nature, 219, 1141-1143.

Carder, D.S., 1945, Seismic investigations in the Bouldeer Dam area, 1940-1944, and the infulence of reservoir loading on earthquake activity. Bull. Seism. Soc. Am., 35, 175-192.

Chadha, R. K., Kuempel, H.-J., Shekar, M., 2008,

Reservoir Triggered Seismicity (RTS) and well water level response in the Koyna-Warna region, India, Tectonophysics, 456, 94-102.

Chaudhury, H.M. and Srivastava, H.N., 1973, The time of occurrence and the magnitude of the largest aftershock over India, Pure and Appl. Geophys, 105, 770-780.

Enescu, B. and Ito, K., 2002, Spatial analysis of frequency distribution and decay rate of aftershock activity of the 2000 Western Tottori earthquake, Earth Planets Space, 54, 847-2002.

Frohlich, C. and Davis, S., 1993, Teleseismic b values: or, much ado about 1.0, J. Geophys. Res., 98, 631-644.

Guo, Z. and Ogata, Y., 1997, Statistical relations between the parameters of aftershocks in time,

space and magnitude, Journal of Geophysical Research, vol: 102, No: B2, 2857-2873.

Gupta, H.K., Mohan, I. and Narain H., 1972, The Broach earthquake of March 23, 1970, Bull. Seismol. Soc. Am., 62, 47-61.

Gupta, H.K. and Rastogi B.K., 1976, Dams and Earthquakes, Elsevier Scientific Publishing Company, Amsterdam, 0-444-41330-8.

Gupta, H.K. and Chadha, R.K., 1995, Induced Seismicity, Birkhauser, Basel-Boston-Berlin, 3-7643-5237-X.

Gupta, H.K, 2002, A reviewof recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India, 58, 279-310.

Gupta, H.K., 2005, Artificial water reservoir-triggered earthquakes with special emphasis at Koyna, Current Science, vol:88, no:10, 1628-1631.

Gutenberg, R. and Richter, C.F., 1954, Earthquake magnitude, intensity, energy and acceleration, Bull. Seis and Soc. Am., 32, 163-191.

Kangi, A., and Heidari, N., 2008, Reservoir induced seismicty in Karun III dam (Southwestern Iran), J. Seismolgy, 12, 519-527.

Kisslinger, C. and Jones, L.M., 1991, Properties of afterschocks sequences in Southern California, J. Geophys. Res., 96, 11, 947- 11, 958

Kisslinger, C., 1996, Aftershock and fault-zone properties, Adv. Geophys., 38, 1-36.

Kocabaş, G. ve Ada, E., 1988, Oymapınar Baraj Gölünün Depremler Üzerine Etkisinin Araştırılması, Deprem Araştırma Bülteni, 60, 37-144.

Kocabaş, G. ve Ada, E., 1992, Oymapınar Baraj Gölünün Depremler Üzerine Etkisinin Araştırılması, DSİ Rapor V, 1-18.

Kocabaş, G. ve Ada, E., 1998, Oymapınar Baraj Gölünün Depremler Üzerine Etkisinin Araştırılması, DSİ Rapor VI, 1-18.

Liu, Z.R., 1986, Earthquake frequency and prediction, Bull. Sais. Soc. Am., 74, 255-265.

McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, M.N., Veis, G., 2000, Global positioning system constrains on plate kinematics and dynamics in the eastern Mediterraneanand Gucasus : Journal of Geophyscial Research, V. 105, no.B3, 56955719.

Mc Evilly, T.V., and Casaday, K.B., 1967, The

earthquake sequence of september 1965 Near Antioch, California, Bull. Seimol. Soc. Am., 57, 113-124.
Mc Evilly, T.V., Bakun, W.W.H. and Casaday, K.B., 1967, The Parkfield, California, earthquakes of 1966, Bull. Seismol. Soc. Am., 57, 1221-1224. Mekkawi, M., Grasso, Jr., Schnegg, P.A., 2004, A

long-lasting relaxation of seismicity at Aswan reservoir Egypt, 1982-2001, Bulletin of the

Seismological of Society of America, 94, 479492.

Mogi, K., 1962, Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena, Bull. Eartquake Res. Int., univ. Tokyo, 40, 125-173. Mogi, K., 1963, Some discussions on aftershocks, foreshocks and earthquake swarms-the fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena, Bull. Earthquake Res. Inst., 41, 615658.

Mogi, K., 1967, Regional variation of aftershock activitiy, Bull. Earthquake. Res. Inst. Univ. Tokyo, 46, 175-203. Olsson, R., 1999, An estimation of the maximum b value in the Gutenber-Richter relation, Geodynamics, 27, 547-552. Papazachos, B.C., 1974, On the Relation between certain artificial lakes and the associated seismic sequences, Paper Presented at Int. Collog. on Seismic Effects of Reservoir Impounding, The Royal Society, London, March, 1973. Papazachos, B., Delibasis, N., Liapis, N., Moumoulidis, G. and Purcasu, G., 1967,

Aftershock sequence of some large earthquakes in the region Greece, Ann. Geofia. (Rome), 20, 193.

Rastogi, B.K., Chadha, R.K. and Sarma, S.P., 1995,

Inverstigation of June 7, 1988 earthquake magnitude 4.5 near Iddukki dam in Southhern India, Pure and Applied Geophysics, 145, no:1, 109-122.

Rastogi, B.K., Mandal, P. and Kumar, N., 1997,

Seismicity around Dhamni Dam, Maharastra, India, Pure and Applied Geophysics, 150, 493509.

Scholz, C.H., 1968, The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes, Bull. Seismol. Soc. Am., 58, 399415.

Simpson, D.W., Leith, W.S. and Scholz C.H., 1988,

Two types of reservoir-induced seismicity, 78, 6, 2025-2040.

Turcotte, D.L., 1986, A fractal model of crustal

deformation, Tectonophy, 132, 261-269. Utsu, T., 1957, Magnitude of Earthquakes and Occurrence of Their Afterschocks, J. Seism., Soc., Japan, II, 10, 35-45.
Utsu, T., 1961, A statistical study on the occurrence of aftershocks, Geophys. Mag. (Tokyo), 30 (4), 523605.

Utsu, T., 1969, Aftershocks and earthquake statistic I. some parameters which characterize an aftershock sequence and their interrelations, J. Fac. Sci. Hokkaido Univ. Ser. 7 (Geophysics), 3, 129-195.

Utsu, T., 1971, Aftershock and Earthquake Statistic (III): Analyses of the Distribution of Earthquakes in Magnitude, Time and Space with Special Consideration to Clustering Characteristics of Earthquake Occurrence (1), j. faculty Sci., Hokkaido University, Ser., VIII (Geophys.), 3, 379-441.

Utsu, T., Ogata, Y., and Matsu'ura, R.S., 1995, The

centerary of the Omori formula for a decay law of afterschock activity, J. Phys. Earth, 43, 1-33. Warren, N.W. and Latham, G.V., 1970, An experimental study of thermally induced microfracturing and its relation to volcanic seismicity, J. Geophys. Res., 75, 4455-4464. Wessel, P. and W.H.F., Smıth, 1998, New, improved version of the Generic Mapping Tools released, EOS Trans. AGU, 79, 579. Wiemer, S. and Mcnutt, S., 1997, Variations in frequency-magnitude distribution with depth in two volcanic areas: Mounth St. Helens. Washington, and Mt. Spurr, Alaska, Geophys. Res. Lett., 24, 189-192. Wiemer, S. and Katsumata, K., 1999, Spatial variability of seimicity parameters in aftershock zones, J. Geophys. Res., 104, 13135-13151. Wiemer, S. and Mcnutt, S. And Wyss, M., 1998,

Temporal and three-dimensional spatial analysis of the frequency-magnitude distribution near Long Valley Caldera, California., Geophys. J. Int., 134, 409-421. Wyss, M., Shimazaki, K., and Wiemer, S., 1997,

Mapping active magma chambers by b value benath Off-Izu Volcano, Japan, J. Geophys. Res., 102, 20, 413-20, 433. Yağmurlu, F. ve Şentürk, M., 2005, Güneybatı Anadolu'nun güncel tektonik yapısı, Türkiye Kuvaterner Sempozyumu, TURQUA-V, 55-61. http://www.dsi.gov.tr/barai/detay.cfm?BaraiID=9 0

http://www.emsc-

csem.org/index.php?page=current&sub=recent& evt=20080512 SICHUAN, http://www.rfa.org/english/news/china/dam qua ke-

02042009103653.html/ChinaSichuanZipingpuDa

mFautline020409.jpg

www.sciencemag .org

Thank you for copying data from http://www.arastirmax.com