Buradasınız

Detecting epistasis via Markov bases

Journal Name:

Publication Year:

AMS Codes:

Abstract (2. Language): 
Rapid research progress in genotyping techniques have allowed large genome-wide association studies. Existing methods often focus on determining associations between single loci and a speci c phenotype. However, a particular phenotype is usually the result of complex relationships between multiple loci and the environment. In this paper, we describe a two-stage method for detecting epistasis by combining the traditionally used single-locus search with a search for multiway interactions. Our method is based on an extended version of Fisher's exact test. To perform this test, a Markov chain is constructed on the space of multidimensional contingency tables using the elements of a Markov basis as moves. We test our method on simulated data and compare it to a two-stage logistic regression method and to a fully Bayesian method, showing that we are able to detect the interacting loci when other methods fail to do so. Finally, we apply our method to a genome-wide data set consisting of 685 dogs and identify epistasis associated with canine hair length for four pairs of single nucleotide polymorphisms (SNPs).
36-53

REFERENCES

References: 

[1] 4ti2 team. 4ti2|a software package for algebraic, geometric and combinatorial problems
on linear spaces. Available at www.4ti2.de.
[2] A. Albrechtsen, S. Castella, G. Andersen, T. Hansen, O. Pedersen, and R. Nielsen.
A Bayesian multilocus association method: allowing for higher-order interaction in
association studies. Genetics, 176(2):1197{1208, 2007.
[3] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-
Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M.
Rubin, and G. Sherlock. Gene ontology: tool for the unication of biology. The Gene
Ontology Consortium. Nature Genetics, 25(1):25{29, 2000.
[4] Y. Bishop, S. Fienberg, and P. Holland. Discrete Multivariate Analysis: Theory and
Practice. MIT Press, Cambridge, 1975.
[5] E. Cadieu, M. W. Ne, P. Quignon, K. Walsh, K. Chase, H. G. Parker, B. M. Vonholdt,
A. Rhue, A. Boyko, A. Byers, A. Wong, D. S. Mosher, A. G. Elkahloun, T. C.
Spady, C. Andre, K. G. Lark, M. Cargill, C. D. Bustamante, R. K. Wayne, and E. A.
Ostrander. Coat variation in the domestic dog is governed by variants in three genes.
Science, 326(5949):150{153, 2009.
REFERENCES 51
[6] H. J. Cordell. Epistasis: what it means, what it doesn't mean, and statistical methods
to detect it in humans. Human Molecular Genetics, 11:2463{2468, 2002.
[7] P. Diaconis and B. Sturmfels. Algebraic algorithms for sampling from conditional
distributions. The Annals of Statistics, 26:363{397, 1998.
[8] I. Dikic and A. Blaukat. Protein tyrosine kinase-mediated pathways in G proteincoupled
receptor signaling. Cell Biochemistry and Biophysics, 30(3):369{387, 1999.
[9] M. Drton, B. Sturmfels, and S. Sullivant. Lectures on algebraic statistics. Basel:
Birkhuser, Oberwolfach Seminars, Vol. 40, 2009.
[10] M. Emily, T. Mailund, J. Hein, L. Schauser, and M. H. Schierup. Using biological
networks to search for interacting loci in genome-wide association studies. European
Journal of Human Genetics, 17(10):1231{1240, 2009.
[11] S. E. Fienberg. An iterative procedure for estimation in contingency tables. Annals
of Mathematical Statistics, 41:907{917, 1970.
[12] W. R. Gilks, S. Richardson, and D. J.(eds.) Spiegelhalter. Markov Chain Monte Carlo
in Practice. London: Chapman & Hall, 1995.
[13] M. E. Goddard and B. J. Hayes. Mapping genes for complex traits in domestic animals
and their use in breeding programmes. Nat Rev Genet, 10(6):381{91, 2009.
[14] A. V. Greig, C. Linge, and G. Burnstock. Purinergic receptors are part of a signalling
system for proliferation and dierentiation in distinct cell lineages in human anagen
hair follicles. Purinergic Signalling, 4(4):331{338, 2008.
[15] I. B. Hallgrimsdottir and D. S. Yuster. A complete classication of epistatic two-locus
models. BMC Genetics, 9:17, 2008.
[16] P. Jones, K. Chase, A. Martin, P. Davern, E. A. Ostrander, and K. G. Lark. Singlenucleotide-
polymorphism-based association mapping of dog stereotypes. Genetics,
179(2):1033{44, 2008.
[17] E. K. Karlsson, I. Baranowska, C. M. Wade, N. H. Salmon Hillbertz, M. C. Zody,
N. Anderson, T. M. Biagi, N. Patterson, G. R. Pielberg, E. J. Kulbokas, 3rd, K. E.
Comstock, E. T. Keller, J. P. Mesirov, H. von Euler, O. Kampe, A. Hedhammar,
E. S. Lander, G. Andersson, L. Andersson, and K. Lindblad-Toh. Ecient mapping of
mendelian traits in dogs through genome-wide association. Nat Genet, 39(11):1321{8,
2007.
[18] K. Lindblad-Toh, C. M. Wade, T. S. Mikkelsen, and E. K. Karlsson. Genome sequence,
comparative analysis and haplotype structure of the domestic dog. Nature,
438(7069):803{19, 2005.
REFERENCES 52
[19] T. A. Manolio, F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindor, D. J. Hunter,
M. I. McCarthy, E. M. Ramos, L. R. Cardon, A. Chakravarti, J. H. Cho, A. E.
Guttmacher, A. Kong, L. Kruglyak, E. Mardis, C. N. Rotimi, M. Slatkin, D. Valle,
A. S. Whittemore, M. Boehnke, A. G. Clark, E. E. Eichler, G. Gibson, J. L. Haines,
T. F. Mackay, S. A. McCarroll, and P. M. Visscher. Finding the missing heritability
of complex diseases. Nature, 461:747{753, 2009.
[20] J. Marchini, P. Donnelly, and L. R. Cardon. Genome-wide strategies for detecting
multiple loci that in
uence complex diseases. Nature Genetics, 37:413{417, 2005.
[21] K. A. Mather, A. L. Caicedo, N. R. Polato, K. M. Olsen, S. McCouch, and M. D.
Purugganan. The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics,
177(4):2223{2232, 2007.
[22] S. A. McCarroll, A. Huett, P. Kuballa, S. D. Chilewski, A. Landry, P. Goyette, M. C.
Zody, J. L. Hall, S. R. Brant, J. H. Cho, R. H. Duerr, M. S. Silverberg, K. D. Taylor,
J. D. Rioux, D. Altshuler, M. J. Daly, and R. J. Xavier. Deletion polymorphism
upstream of irgm associated with altered irgm expression and crohn's disease. Nature
Genetics, 40:1107{1112, 2008.
[23] M. I. McCarthy, G. R. Abecasis, L. R. Cardon, D. B. Goldstein, J. Little, J. P. A.
Ioannidis, and J. N. Hirschhorn. Genome-wide association studies for complex traits:
consensus, uncertainty and challenges. Nature Reviews Genetics, 9:356{369, 2008.
[24] J. K. Pritchard. Are rare variants responsible for susceptibility to complex diseases?
American Journal of Human Genetics, 69:124{137, 2001.
[25] J. M. Smith and J. Haigh. The hitchhiking eect of a favourable gene. Genetical
Research, 23:23{35, 1974.
[26] N. B. Sutter, M. A. Eberle, H. G. Parker, B. J. Pullar, E. F. Kirkness, L. Kruglyak,
and E. A. Ostrander. Extensive and breed-specic linkage disequilibrium in Canis
familiaris. Genome Res, 14(12):2388{96, 2004.
[27] R. K. Wayne and E. A. Ostrander. Lessons learned from the dog genome. Trends
Genet, 23(11):557{67, 2007.
[28] N. Weger and T. Schlake. Igf-I signalling controls the hair growth cycle and the
dierentiation of hair shafts. Journal of Investigative Dermatology, 125(5):873{882,
2005.
[29] G. L.Wol, J. S. Stanley, M. E. Ferguson, P. M. Simpson, M. J. Ronis, and T. M. Badger.
Agouti signaling protein stimulates cell division in "viable yellow" (Avy/a) mouse
liver. Experimental Biology and Medicine (Maywood), 232(10):1326{1329, 2007.
REFERENCES 53
[30] F. A. Wright, H. Huang, X. Guan, K. Gamiel, C. Jeries, W. T. Barry, F. Pardo-
Manuel de Villena, P. F. Sullivan, K. C. Wilhelmsen, and F. Zou. Simulating association
studies: a data-based resampling method for candidate regions or whole genome
scans. Bioinformatics, 23:2581{2588, 2007.
[31] Y. Zhang and J. S. Liu. Bayesian inference of epistatic interactions in case-control
studies. Nature Genetics, 39:1167{1173, 2007.

Thank you for copying data from http://www.arastirmax.com