Buradasınız

Optimisation of cutting in primary wood transformation industries

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.3926/jiem.374
Abstract (2. Language): 
Purpose: The loss of raw materials in wood cutting industries has reached high proportions (30 to 36% of volume yield, Ngolle Ngolle, 2009). The purpose of this paper is to solve the problem of optimising the production on the basis of the commercial value of the cuts. Design/methodology/approach: In order to tackle this problem, we started with the generalities on the exploitation and the primary conversion of wood in Cameroon. After that, we studied the various methods of cutting and the different products obtained. We then proceeded with the formulation of the log cutting optimisation problem based on a real shape model of the logs, objective of research works presented in (Danwé, Bindzi, Meva’a & Nola, 2011). We finally completed our work with the design and the presentation of a software package called cutting optimiser. Findings: We start by having some knowledge on the geometry of the logs, cutting strategies and classification of cuts. This classification enables us to determine the quality and quantity of the production, and to estimate the commercial value of the log. The solution to this problem then led to the design of a software package.Research limitations/implications: In this paper, the optimisation problem concerns problems where the objective function is non-explicit, the variables discreet, and the constraints non-explicit. Practical implications: The solution to this problem then led to the design of a software package to be used as a cutting optimiser. The automation of the cutting operation leads to an accelerated work and an increase in the volume of the cuts produced daily. Originality/value: This research is among the few to solve discrete optimization problems with constraints. Some constraints concerning the mechanical characteristics of the logs are taken into account. The constraints can equally be non-explicit. Moreover the market standards impose technological constraints which render the problem of optimisation even more complex.
115-132

REFERENCES

References: 

Bertsimas, D., & Demir, R. (2002). An approximate dynamic programming approach to multidimensional knapsack problem. Management Science, 4, 550-565. http://dx.doi.org/10.1287/mnsc.48.4.550.208
Chiorescu, S., & Grönlund, A. (2000). Validation of a CT-based simulator against a sawmill yield. Forest Products Journal, 50(6), 69-76.
Cummings, L. K., & Culbertson, D. D. (1972). Sawmill simulation model for maximizing log yield values. Forest Products Journal, 22(10), 34-40.
Danwé, R., Bindzi, I., Meva’a, L., & Nola, B. F. (2011). Numerical simulation of the geometry of logs for sawing industries. International Journal of Engineering Science and Technology, 3(2), 981-989.
Danwé, R., Bindzi, I., Meva’a, L., & Mbagnia, B. (2009). Modélisation géométrique et optimisation de la production dans les industries de premières transformations du bois. Proceedings of the 19ème Congrès Français de Mécanique, Marseille, France, 24-28 août 2009.Duhesme, C., & Ngatchou, E. (2006). Étude d’applicabilité des critères de légalités au Cameroun. Eurocertifor-BVQI
Fréville, A. (2004). The multidimensional 0-1 knapsack problem: An overview. European Journal of Operational Research, 155, 1-21. http://dx.doi.org/10.1016/S0377-2217(03)00274-1
Garfinkel , R. S., & Nemhauser, G. L. (1972). Integer Programming. New York: John Wiley & Sons. ISBN 0-471-29195-1.
Hanafi, S., & Wilbaut, C. (2006). Extension d’une heuristique basée sur la programmation linéaire pour le sac à dos multidimensionnnel. Conférence ROADEF2006.
Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack Problems. Springer.
Lewis, D. W. (1985). Sawmill simulation and the Best Opening Face system: A user's guide. General Technical Report FPL-48, US Department of Agriculture, Forest Service, Forest Products Laboratory Madison, Wisconsin.
Loi N°94/01. (20 janvier 1994). Portant régime des forêts, de la faune et de la pêche, Cameroon.
Longuetaud, F., Saint André, L., & Leban, J. M. (2005). Automatic detection of growth on Picea abies logs using an optical and an X-ray techniques. Journal of Non-Destructive Evaluation, 24(1), 29-43. http://dx.doi.org/10.1007/s10921-005-6658-8
Ngolle Ngolle, E. (2009). Foresterie: Les potentialités et opportunités d’investissement dans le secteur forestier. Cameroon Investment Forum.
Osario, M., Glover, F., & Hammer, P. (2002). Cutting and surrogate analysis for improved multi-dimensional knapsack problem. Annals of Operations Research, 117, 71-93. http://dx.doi.org/10.1023/A:1021513321301
Perré, P., & Badel, E. (2003). Predicting oak wood properties using X-ray inspection: representation, homogenisation and localisation. Part II: Computation of macroscopic properties and microscopic stress fields, Annals of Forest Science, 60, 247–257. http://dx.doi.org/10.1051/forest:2003016Pinto, I. (2004). Raw material characteristics of maritime pine (Pinus pinaster Ait) and their influence on simulated sawing yield. Doctoral thesis. Espoo, VTT publications. Helsinki University of Technology, 69.
Pinto, I., Pereira, H., & Usenius, A. (2002). Sawing simulation of pinus pinaster Ait. Proceedings of the Fourth Workshop of IUFRO WP S5.01.04. Connection between forest resources and wood quality: modeling approaches and simulation software. British Columbia, Canada, 8-15 September 2002, Ed. G. Nepveu, INRA, Nancy, (pp. 429-438).
Schrijver, A. (2004). Combinatorial optimization. Springer.
Williston, E. M. (1985). Computer control system for log processing and lumber manufacturing. San Francisco: Miller Freeman Publications.

Thank you for copying data from http://www.arastirmax.com