Buradasınız

Protein Oksidasyonun Biyokimyasal ve Moleküler Mekanizması

Biochemical and Molecular Mechanism of Protein Oxidation

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Free amino acids and amino acid residues in proteins are highly susceptible to oxidation by various oxygen and nitrogen species (ROS, RNS) or metal ions. The production of ROS is influenced by cellular metabolic activities as well as environmental factors. ROS can react with all major biological macromolecules such as carbohydrates, nucleic acids, lipids, and proteins. Proteins are the key molecules that play the ultimate role in various structural and functional aspects of living organisms. We report on biochemical and molecular mechanisms of ROS-mediated oxidation of proteins and free amino acids. Oxidation of proteins can lead to hydroxylation of aromatic groups and aliphatic amino acid side chains, nitration of aromatic amino acid residues, nitrosylation of sulfhydryl groups, sulfoxidation of methionine residues, chlorination of aromatic groups and primary amino groups, and to conversion of some amino acid residues to carbonyl derivatives. Oxidation can lead also to cleavage of the polypeptide chain and to formation of cross-linked protein aggregates. The consequent protein oxidation involves several propagating radicals, notably alkoxyl radicals. Furthermore, functional groups of proteins can react with oxidation products of polyunsaturated fatty acids such as 2-alkenals, 4-hydroxy-2-alkenals, and ketoaldehydes and with carbohydrate derivatives (glycation/glycoxidation) to produce inactive derivatives. There is also a correlation between aging and the accumulation of oxidatively damaged proteins, lipids, and nucleic acids. Oxidatively modified proteins have been shown to increase as a function of age. Factors that decelerate protein oxidation also increase the life span of living organisms. Furthermore, a number of age-related or other diseases such as cancer, diabetes mellitus, atherosclerosis, neurodegenerative, and cardiovascular diseases in vertebrates have been shown to be associated with elevated levels of oxidatively modified proteins. The level of these modified molecules can be quantitated by measurement of the protein carbonyls compounds and other oxidized end products content, which have been shown to increase in a variety of diseases and processes, notably during aging as a result of oxidative stress.
Abstract (Original Language): 
Serbest amino asitler ve proteinlerdeki amino asit kökleri çeşitli reaktif oksijen ve azot türleri (ROT, RAT) ve metal iyonlarının okside edici etkilerine karşı oldukça hassastırlar. ROT üretimi çevresel faktörlerin etkisi ile olduğu kadar hücresel metabolik aktiviteler sonucunda da gerçekleşir. ROT’lar karbohidrat, nükleik asit, lipid ve proteinler gibi hücrenin temel makromolekülleri ile etkileşebilir. Proteinler canlı organizmalarda yapısal ve işlevsel olarak önemli rolleri üstlenmiş biyomoleküller olduğundan bu makalede protein ve serbest amino asitlerin ROT aracılığı ile oksidasyonu üzerinde durulmuştur. Proteinlerin oksidasyonu sonucu aromatik grupların ve alifatik amino asit yan zincirlerinin hidroksilasyonu, aromatik amino asit köklerinin ve sülfidril gruplarının nitrolanması, metiyoninin sülfoksitlenmesi, aromatik ve primer amin gruplarının klorlanması ve bazı amino asit köklerinin karbonil türevlerine dönüşümü gerçekleşir. Oksidasyon aynı zamanda çapraz bağlı proteinlerin oluşumu ve polipeptit zincirinin kırılmasına da neden olarak sonuçta bazı radikallerin en önemlisi alkoksil radikallerinin oluşumunu sağlar. Ayrıca proteinlerin fonksiyonel grupları 2-alkenal, 4-hidroksi-2-alkenal, and ketoaldehid gibi çoklu doymamış yağ asitlerinin oksidasyon ürünleri ve bazı karbohidrat türevleri (karbohidrat eklenmesi veya karbohidratların oksidasyon ürünleri) ile reaksiyona girerek inaktif türev bileşikleri oluştururlar. Diğer taraftan yaşlanma ve oksidatif hasara uğramış protein lipid ve nükleik asitlerin birikmesi arasında bir ilişki bulunmaktadır. Oksidatif olarak modifiye olmuş proteinlerin miktarında yaşın ilerlemesi ile birlikte artış olduğu ve protein oksidasyonunu azaltan faktörlerin aynı zamanda canlıların yaşam süresini uzattığı bilinmektedir. Ayrıca omurgalılarda diyabet, aterosklerosis, nörodejeneratif hastalıklar, kalp ve damar sistemi rahatsızlıkları gibi yaşlanmaya ve diğer çok sayıda hastalıklara bağlı protein oksidasyonu ürünlerinin fazla oluşumu sonucu hücre ve dokularda aşırı birikimi ile ilişkili olduğu gösterilmiştir. Protein oksidasyonu seviyesi çeşitli oksidatif stres faktörlerinden kaynaklanan bazı hastalıklar ve önemlisi yaşlanma sırasında miktarı yükselen protein oksidasyonun en önemli belirteci olan protein karbonil bileşiklerinin ve diğer son ürünlerin miktarının ölçülmesi ile belirlenebilmektedir.
40-51

REFERENCES

References: 

Adler, V., Yin, ZM., Tew, KD., Ronai, Z. 1999.Role of redox
potential and reactive oxygen species in stress
signaling. Oncogene, 18 (45): 6104-6111.
Aikawa, R., Komuro, I., Yamazakı, T., Zou, Y., Kudoh, S.,
Tanaka, M., Shıojıma, I., Hiroi, Y., Yazakı, Y. 1997. Oxi-dative stress activates extracellular signal regulated kinases
through Src and Ras in cultured cardiac myocytes of neo-natal rats. J. Clin. Invest., 100 (7): 1813-1821.
Andreoli, C., Prokisch, H., Hortnagel, K., Mueller, JC., Müns-terkötter, M., Scharfe, C., Meitinger, T. 2004. MitoP2, an
integrated database on mitochondrial proteins in yeast and
man. Nucleic Acids Res., 32: 459-462.
Barker, MG., Brimage, LJ., Smart, KA. 1999.Effect of Cu,Zn
superoxide dismutase disruption mutation on replicative
senescence in Saccharomyces cerevisiae. FEMS Microbiol. Lett.,
177 (2): 199-204.
Beckman, KB., Ames, BN. 1998.The free radical theory of
aging matures. Physiol. Rev., 78 (2): 547-581.
Berlett, BS., Stadtman, ER. 1997.Protein oxidation in aging,
disease, and oxidative stres. J. Biol. Chem., 272 (33): 20313-20316.
Bogdan, C., Rollinghoff, M., Diefenbach, A. 2000.The role
of nitric oxide in innate immunity. Immunol. Rev., 173 (1):
17-26.
Bogdan, C. 2001.Nitric oxide and the immune response. Nat
Immunol., 2 (10): 907-916.
Bonawitz, ND., Rodeheffer, MS., Shadel, GS. 2006.Defective
mitochondrial gene expression results in reactive oxygen
species-mediated inhibition of respiration and reduction of
yeast life span. Mol. Cell Biol.,26 (13): 4818-4829.
Büyükgüzel, E., Hyršl, P., Büyükgüzel, K. 2010.Eicosanoids
mediate hemolymph oxidative and antioxidative response
in larvae of Galleria mellonellaL. Comp. Biochem. Physiol. Part
A: Mol. & Integrative Physiol., 156: 176-183.
Ceballos, PI., Trıvıer, JM., Nıcole, A. 1992.Age- correlated
modification of copper – zinc superoxide dismutase and
glutationic related enzyme activities in human erytrocytes.
Clinical Chem., 38: 66-70.
Chang, TC., Chou, WY., Chang, GG. 2000.Protein oxidation
and turnover. J. Biomed. Sci., 7: 357-363.
Chesemann, KH., Slater, TF. 1993.An introduction to free ra-dical biochemistry. Br. Med. Bulletin., 49 (5): 481-493.
Çakatay, U., Telci, A., Kayalı, R, Tekeli, F., Akcay, T., Sivas,
A. 2003. Relation of aging with oxidative protein damage
parameters in the rat skeletal muscle, Clin. Biochem.,36 (1):
51-55.
Çakatay, U., Telci, A. 2000.Oksidatif protein hasarı ve saptan-masında kullanılan marker’lar. İst. Tıp Fak. Mecmuası.,63:
314-317.
Dean, RT., Fu, S., Stocker, R., Davies, MJ. 1997.Biochemistry
and pathology of radical-mediated protein oxidation. Bioc-hem. J.,324 (1): 1-18.
Dimopoulos, G., Muller, HM., Levashina, EA., Kafatos, FC.
2001.Innate immune defense against malaria infection in
the mosquito. Curr. Opin. Immunol.,13 (1): 79-88.
Dröge, W. 2002. Free radicals in the physiological control of cell
function. Physiol Rev.,82 (1): 47-95.
Evans P, Lyras L, Halliwell B. 1999.Measurement of protein
carbonyls in human brain tissue. Methods Enzymol.,300:
145-156.
Foley, E., O’farrell, PH. 2003.Nitric oxide contributes to induc-tion of innate immune responses to Gram-negative bacteria
in Drosophila. Genes Dev.,17 (1): 115-125.
Fraga, CG., Shigenaga, MK., Park, JW., Degan, P., Ames, BN.
1990.Oxidative damage to DNA during aging: 8-hydroxy-2’-deoxyguanosine in rat organ DNA and urine. Proc. Natl.
Acad. Sci.,87 (12): 4533-4537.
Garrison, WM., Jayko, ME., Bennet, W. 1962.Radiation-indu-ced oxidation of proteins in aqueous solution. Radiat. Res.,
16: 487-502.
Gülbahar, Ö. 2007. Protein oksidasyonun mekanizması, önemi
ve yaşlılıkla ilgisi. Turk. J. Geriatrics., 10 (1): 43-48.
Harman D. 1956.Aging: a theory based on free radical and
radiation chemistry. J. Gerontol., 11 (3): 298-300.
Harman, D. 1981. The aging process. Proc Natl Acad Sci USA.
78 (11): 7124-7128.
Hawkins, CL., Davies, MJ. 2001. Generation and propagation
of radical reactions on proteins. Biochim. Biophys. Acta.,1504
(2-3): 196-219.
Headlam, HA., Davies, MJ. 2002.Beta-scission of side-chain
alkoxyl radicals on peptides and proteins results in the loss
of side-chains as aldehydes and ketones. Free Rad. Biol. Med.
32 (11): 1171-1184.
Headlam, HA., Mortimer, A., Easton, CJ., Davies, MJ. 2000.
β-Scission of C-3 (β-Carbon) alkoxyl radicals on peptides
and proteins: a novel pathway which results in the forma-tion of α-carbon radicals and the loss of amino acid side
chains. Chem. Res. Toxicol., 13 (11): 1087-1095.
Jensen,RE., Hobbs,AE., Cerveny, KL.,Sesaki,H. 2000.Yeast
mitochondrial dynamics: fusion, division, segregation, and
shape. Microsc. Res. Tech.,51 (6): 573-583.
Kayalı, R., Çakatay, U. 2004.Protein oksidasyonuun ana meka-nizmaları. Cerrahpaşa Tıp Dergisi., 35 (2): 83-89.
Kowaltowski, AJ., Vercesi, AE. 1999.Mitochondrial damage
induced by conditions of oxidative stress. Free Radic. Biol.
Med.,26 (3-4): 463-471.
Levine, RL., Berlett, BS., Moskovitz, J., Mosoni, L, Stadtman,
ER. 1999.Methionine residues may protect proteins from
critical oxidative damage. Mech Ageing Dev., 107 (3): 323-332.
Li, S., Nguyen, TH., Schoneich, C., Borchardt, RT. 1995.Agg-regation and precipitation of human relaxin induced by
metal-catalyzed oxidation. Biochemistry. 34 (17): 5762-5772.
Luckhart, S., Vodovotz, Y., Cui, LW., Rosenberg, R. 1998.The
mosquito Anopheles stephensilimits malaria parasite deve-lopment with inducible synthesis of nitric oxide. Proc. Natl.
Acad. SciUSA. 95 (10): 5700-5705.
Mccord, JM., Frıdovıch, I. 1969.Superoxide dismutase: an
enzymic function for erythrocuprein (hemocuprein). J. Biol.
Chem.,244 (22): 6049-6055.
Meister Winter, GE., Butler, A. 1996.Inactivation of vanadium
bromoperoxidase: formation of 2-oxohistidine. Bioche-mistry.,35 (36): 11805-11811.
Moradas-Ferreira, P., Costa, V., Piper, P., Mager, W. 1996.The
molecular defences against reactive oxygen species in yeast.
Mol. Microbiol.,19 (4): 651-658.
Nappi, AJ., Vass, E. 2001.Cytotoxic reactions associated with
insect immunity. In: phylogenetic perspectives on the ver-tebrate immune system, edited by Beck G, Sugumaran
M, Cooper EL. Kluwer Academic/Plenum Publishers, New
York, p.329- 348.
Orr, WC., Sohal, RS. 1994. Extension of life-span by overexp-ression of superoxide dismutase and catalase in Drosophila
melanogaster. Science. 263 (5150): 1128-1130.
Requena, JR., Groth, D., Legname, G., Stadtman, ER., Prusi-ner, SB., Levine, RL. 2001.Copper-catalyzed oxidation of
the recombinant SHa (29–231) prion protein. Proc Natl Acad
SciUSA. 98 (13): 7170-7175.
Requena, JR., Levine, RL., Stadtman, ER. 2003.Recent advan-ces in the analysis of oxidized proteins. Review Article Amino
Acids.,25 (3): 221-226.
Reznick, AZ., Packer, L. 1994.Oxidative damage to proteins:
Spectrophotometric method for carbonyl assay. Methods
Enzymol.,233:357-363.
Shacter, E. 2000.Protein oxidative damage. Methods Enzymol.,
319: 428-436.
Shuessler H, Schilling K. 1984.Oxygen effect in radiolysis of
proteins. Part 2. Bovine serum albumin. Int J Radiat Biol.,45
(3): 267-281.
Singh, KK. 1998.Mitochondrial DNA mutations in aging, dise-ase and cancer. Springer. New York, NY.
Sohal, RS., Agarwal, A., Agarwal, S., Orr, WC. 1995.Simulta-neous overexpression of copper- and zinc-containing supe-roxide dismutase and catalase retards age-related oxidative
damage and increases metabolic potential in Drosophila
melanogaster. J. Biol. Chem.,270 (26): 15671-15674.
Sohal, RS., Agarwal, S., Candas, M., Forster, MJ., Lal, H. 1994.
Effect of age and caloric restriction of DNA oxidative dama-ge in different tissues of C57BL/6 mice. Mech. Ageing Dev.,
76 (2-3): 215-224.
Sohal, RS., Arnold, LA., Sohal, BH. 1990.Age-related changes
in antioxidant enzymes and prooxidant generation in tis-sues of the rat with special reference to parameters in two
insect species. Free Rad. Biol. Med., 9 (6): 495-500.Sohal, RS., Dubey, A. 1994. Mitochondrial oxidative damage,
hydrogen peroxide release, and aging. Free Rad. Biol. Med.,
16 (5): 621-626.
Sohal, RS. 1991.Hydrogen peroxide production by mitoc-hondria may be a biomarker of aging. Mech. Ageing Dev.,
60 (2): 189-198.
Stadtman, ER., Levine, RL. 2000.Protein oxidation. Ann N Y
Acad Sci. 899: 191-208.
Stadtman, ER. 1992.Protein oxidation and aging. Science.,257
(5074): 1220-1224.
Stadtman, ER. 2001.Protein oxidation in aging and age-related
diseases. Ann N Y Acad Sci.928 (1): 22-38.
Stefano, GB., Ottaviani, E. 2002.The biochemical substrate of
nitric oxide signaling is present in primitive non-cognitive
organisms. Brain Res.,924 (1): 82-89.
Swallow, AJ. 1960.Radiation chemistry of organic compounds.
New York, John Wiley & Sons, 211-224.
Uchida, K., Kawakishi, S.1986.Selective oxidation of imidazo-le ring in histidine residues by the ascorbic acid-copper ion
system. Biochem Biophys Res Commun.,138 (2): 659-665.
Uchida, K., Kawakishi, S.1994.Identification of oxidized
histidine generated at the active site of Cu, Zn-superoxide
dismutase exposed to H
2O2
. Selective generation of 2-oxo-histidine atthe histidine 118. J. Biol. Chem.,269: 2405-2410.
Uchida, K., Stadtman, ER. 1993.Covalent attachment of
4-hydroxynonenal to glyceraldehyde-3-phosphate dehy-drogenase: a possible involvement of intramolecular and
intermolecular cross-linking reactions. J. Biol. Chem.,268 (9):
6388-6393.
Uchida, K. 2003.Histidine and lysine as targets of oxidative
modification. Review Article Amino Acids.,25 (3-4): 249-257.
Ünlü, ES., Koç, A. 2007.Effects of deleting mitochondrial anti-oxidant genes on life span. Ann NY Acad Sci. 1100: 505-509.
Weiske, J., Wiesner, A. 1999.Stimulation of NO synthase ac-tivity in the immune competent lepidopteran Estigmene
acraea hemocyte line. Nitric Oxid Biol. Chem.,3 (2): 123-131.
Whitten, M., Sun, F., Tew, I., Schaub, G., Soukou, C., Nappi,
A., Ratcliffe, NA. 2007.Differential modulation of Rhodni-us prolixusnitric oxide activities following challenge with
Trypanosoma rangeli, T. cruziand bacterial cell wall compo-nents. Insect Biochem Mol. Biol., 37 (5): 440-452.
Winterbourn, CC., Ketle, AJ. 2000. Biomarkers of myelopero-xidase derived hypoclorous acid. Free Rad. Biol. Med.,29:
403-409.
Witko-Sarsat, V., Friedlander, M., Capeillere-Blandin, C.,
Nguyen-Khoa, T., Nguyen, AT., Zingraff, J., Jungers, P.,
Descamps-Latscha, B. 1996.Advanced oxidation protein
products as a novel marker of oxidative stress in uremia.
Kidney Int.,49 (5): 1304-1313.
Zhao, F., Ghezzo-Schoneich, E., Aced, GI., Hong, J., Milby, T.,
Schoneich, C. 1997.Metal-catalyzed oxidation of histidine
in human growth hormone: mechanism, isotope effects,
and inhibition by a mild denaturing alcohol. J. Biol. Chem.,
72 (14): 9019-9029.

Thank you for copying data from http://www.arastirmax.com