Buradasınız

Composition followed by differentiation between weighted Bergman-Nevanlinna spaces

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper, we characterize boundedness of C'D acting on weighted Bergman-Nevanlinna spaces, where C' is the composition operator and D is the differentiation operator. We also provide a necessary condition and a sufficient condition for C'D to be compact on weighted Bergman- Nevanlinna spaces.
379-388

REFERENCES

References: 

[1] C. Cowen and B. D. MacCluer, Composition operators on spaces of ana-
lytic functions, CRC Press Boca Raton, New York, 1995.
[2] B. R. Choe, H. Koo and W. Smith, Carleson measures for the area Nevan-
linna spaces and applications, J. Anal. Math., 104 (2008), 207-233.
Composition followed by differentiation 387
[3] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman spaces,
Springer-Verlag, New York, 2000.
[4] R. A. Hibschweiler and N. Portnoy, Composition followed by differentia-
tion between Bergman and Hardy spaces, Rocky Mountain J. Math. 35
(2005), 843-855.
[5] S. Ohno, Products of composition and differentiation between Hardy
spaces, Bull. Austral. Math. Soc 73 (2006), 235-243.
[6] J. H. Shapiro, Composition operators and classical function theory,
Springer-Verlag, New York, 1993.
[7] A. K. Sharma, Generalized composition operators on the Bergman space,
Demononstratio Math. 44 (2011), 359-372.
[8] A. K. Sharma, Products of composition multiplication and differentiation
between Bergman and Bloch type spaces, Turkish. J. Math. 35 (2011) ,
275 - 291.
[9] A. K. Sharma, Compact composition operators on generalized Hardy
spaces, Georgian J. Math., 15(4), (2008) 775-783.
[10] A. K. Sharma and Z. Abbas, Weighted composition operators between
Bergman-Nevanlinna and Bloch spaces, App. Math. Sci. 4(41), (2010),
2039-2048.
[11] A. K. Sharma and Z. Abbas, Composition followed and proceeded by
differentiation between Bergman-Nevanlinna and Bloch spaces, J. Adv.
Res. in Pure Math., 1, (2009), 53-62.
[12] S. Stevic and A. K. Sharma, Weighted composition operators between
Hardy and growth spaces of the upper half-plane, Appl. Math. Comput.
217 (2011) 4928-4934.
[13] S. Stevic and A. K. Sharma, Essential norm of composition operators
between weighted Hardy spaces, Appl. Math. Comput. 217 (2011) 6192-
6197.
[14] S. Stevic and A. K. Sharma, Weighted composition operators between
growth spaces of the upper-half plane, Util. Math, 84 (2011) 265-272.
[15] S. Stevic and A. K. Sharma, Composition operators from the space of
cauchy transforms to Bloch and the little Bloch-type spaces on the unit
disk, Appl. Math. Comput. 217 (2011), 10187-10194.
388 A. Bhat, Z. Abbas and A. K. Sharma
[16] S. Stevic and A. K. Sharma and A. Bhat, Products of composition mul-
tiplication and differentiation between weighted Bergman spaces, Appl.
Math. Comput. 217 (2011), 8115-8125.
[17] S. Stevic, A. K. Sharma and S. D. Sharma, Weighted composition opera-
tors from weighted Bergman spaces to weighted type spaces of the upper
half-plane, Abstr. Appl. Anal. (2011), Article ID 989625, 10 pages.
[18] X. Zhu, Products of differentiation, composition and multiplication from
Bergman type spaces to Bers type space, Integ. Tran. Spec. Function.,18
(3) (2007), 223-231.

Thank you for copying data from http://www.arastirmax.com