Buradasınız

Chemotherapy of a tumor by optimal control approach

Journal Name:

Publication Year:

Abstract (2. Language): 
We study a model of tumor which grows or shrinks due the proliferation of cells which depends on nutrient concentration  modeled by a diffusion equation. The tumor is assumed to be spherical shape and its boundary is unknown. From optimal control, we show some results and optimal control lying to the evolution of tumor. We use also some tools in shape and topological optimization to detect the evolution of the tumor and its shape and we do some numerical simulations.
779-803

REFERENCES

References: 

[1] S.Amstutz Aspects th´eoriques et num´eriques en optimisation de forme
topologique, Th`ese , INSA Toulouse 2003.
[2] B.V.Bazaly and A.Friedman A Free Boundary Probleme for an Elliptic-
Parabolic System : Application to a Model of Tumor Growth Communication
in Partial Differential Equations Vol. 28 Nos 3 and 4, pp. 517-560,
2003
[3] B.Bazaly et A.Friedman Global Existence and Asymptotic Stability for An
Elliptic-parabolique Free Boundary Prolem :
An Application to a model of Tumor Growth. Indiana University Mathematics
Journal, Vol.52, No.5 (2003)
[4] M.A.J. Chaplain The development of a spatial pattern in a model for cancer
growth, Experimental and Theoretical Advances in Biological Pattern
Formation (H. G. Othmer, P. K. Maini, and J. D. Murray, eds.), Plenum
Press, 1993, pp. 45-60.
[5] S Cui, A Friedman Analysis of a mathematical of the effect inhibitors on
the growth of tumors. Mathematical Biosciences 164 (2000) 103-137
[6] S.Cui and A.Friedman Analysis of a mathematical model of the growth of
necrotic tumors Journal of Mathematical Analysis and Applications 255,
636-677 (2001)
[7] S.Cui and A.Friedman A Free Boundary Problme For A Singular System
Of Differential Equations : An Application To A Model Of Tumor
Growth0.Transactions of the American Mathematical Society. Vol.355,
Number 9, p.3537-3590 (2003)
[8] R. Dautray. J.L. Lions. Analyse math´ematique et calcul num´erique pour
les sciences et techniques. Tome II, Masson, Paris 1987.
[9] De Pillis,L.G and Radunskaya,A., A mathematical tumor model with immune
resistance and drug therapy: an optimal control approach, Journal
of Theoretical Medicine, 2000
[10] A.Friedman Free boundary problems arising in tumor models Mat. Acc.
Lincei (2004) s.9, v.15 : 161-168
Chemotherapy of a tumor by optimal control approach 801
[11] A.Friedman and F.Reitich Analysis of a mathematical model for the
growth of tumors J. Math. Biol. (1999) 38: 262-284
[12] A.Friedman and F.Reitich Symmetry-Breaking Bifurcation of Analytic solutions
to Free Boundary Problems : An Application to A Model of Tumor
Growth.Transactions of the American Mathematical Society. Vol. 353,
Number 4, Pages 1587-1634, (2000) Springer-Verlag 1994
[13] S. Garreau, Ph Guillaume and M. Masmoudi, The topological asymptotic
for PDE systems: the elastic case. SIAM Control and optim. 39(6) pp
1756-1778, 2001.
[14] H.P. Greenspan Models for the growth of a solid tumor by diffusion, Studies
Appl. Math. 52 (1972), 317-340
[15] H.P. Greenspan On the growth on cell culture and solid tumors, Theoretical
Biology 56 (1976), 229-242
[16] Ph. Guillaume and M. Masmoudi Computation of high order derivatices
in optimal design Numerische Mathematik pp 213-250
[17] Ph. Guillaume and K. Sid Idris: The topological expansion for the Dirichlet
problem, SIAM J. Control and optim. 41(4), pp 1042-1072, 2002.
[18] Kimmel,M. and Swierniak,A. Control Theory Approach to Cancer
Chemotherapy: Benefiting from Phase Dependence and Overcoming Drug
Resistance,
[19] Ledzewicz,U., and Sachattlerl,H., Drug resistance in cancer chemotherapy
as an optimal control problem, Discrete and continuous dynamical
systems- series-B Volume 6, Number 1, January 2006,pp. 129-150
[20] F.L.Levis, V.L.Syrmos Optimal control2nd Edition Hardcover Paperback
1995
[21] J.L.Lions Contrˆole optimal des syst`eme distribu´es gouvern´es par des Equations
aux D´eriv´ees Partielles, DUNOD 1968
[22] M. Masmoudi, The topological asymptotic, in computational methods for
control applications, H. Kawarada and J. Periaux, eds, GAKUTO Internat.
Ser. Math. Sci. Appli. Gakkot¯osho, Tokyo, 2002.
[23] S.A. Nazarov, J. Sokolowski Asyptotic analysys of Shape Functionnals J Math.
Pures Appl. 82 (2003) pp 125-196.
[24] M.Ngom, I.Ly and D.Seck Study of a tumor by shape and topological optimiza-
tion. Applied Mathematical Sciences, Vol. 5, 2011, no. 1, 1-21
802 Ngom, Ly and Seck
[25] Y.Renard+,J.Pommier GETFEM++ An open source generic C++ library for
nit element methods, http://home.gna.org/getfem/.
[26] Swan ,G. W. Role of optimal control theory in cancer chemotherapy, Math
Biosci. 1990 Oct;101(2):237-84
[27] Swan ,G. W. Optimal Control Analysis of a Cancer Chemotherapy Problem,
Mathematical Medicine and Biology 1987 4(2):171-184

Thank you for copying data from http://www.arastirmax.com