Buradasınız

Öğrencilerin Kuyruklu Yıldız Problemi’ne İlişkin Çözüm Yaklaşımlarının Matematiksel Modelleme Süreci Çerçevesinde İncelenmesi

Examining Students’ Solutions Regarding the Comet Problem in the Frame of Mathematical Modeling Process

Journal Name:

Publication Year:

Abstract (2. Language): 
The purpose of the study is to examine students' solutions regarding the Comet Problem in the framework of mathematical modeling process. In the study conducted with ten secondary students, the data were collected through the written solutions to the Comet Problem solved by the students individually and the transcriptions of the video recordings including the students' think-alouds during the solution process. The rubric prepared by considering the seven-stage mathematical modeling process was used in the analysis of the problem. It was seen that the students' performances decreased gradually while going through the stages of the modeling process. The students did not display any approaches in the stage of the validation of the model. It is advised that students should be faced with much more mathematical modeling applications, and their approaches should be improved in the modeling process.
Abstract (Original Language): 
Bu çalışmanın amacı, matematiksel modelleme süreci çerçevesinde öğrencilerin Kuyruklu Yıldız Problemi'ne ilişkin çözüm yaklaşımlarını incelemektir. On ortaöğretim öğrencisiyle gerçekleştirilen araştırmada veriler öğrencilerin bireysel olarak çözdükleri Kuyruklu Yıldız Problemi'nin yazılı yanıt kağıtlarından ve çözüm süreçlerinde sesli düşünmelerini içeren video kayıtları çözümlemelerinden derlenmiştir. Problemin analizinde yedi basamaklı matematiksel modelleme süreci dikkate alınarak hazırlanan dereceli puanlama anahtarından yararlanılmıştır. Modelleme süreci basamaklarında ilerledikçe öğrencilerin performanslarının azaldığı görülmüştür. Öğrenciler modeli doğrulama basamağında hiç bir yaklaşım sergilememişlerdir. Öğrencilerin daha fazla matematiksel modelleme uygulamaları ile karşılaşmaları ve böylelikle modelleme süreci basamaklarındaki yaklaşımlarını geliştirmeleri sağlanmalıdır.
1
17

REFERENCES

References: 

Balyta, P. (1999). The effects of Using Motion Detector Techonology to Develop Conceptual
Understanding of Functions Through Dynamic Representation in Grade 6 Students, A
Thesis in the Department of Mathematics and Statistics. Presented in Partial
Fulfilment of the Requirements for the Degree of Master in the Teaching of
Mathematics at Concordia University, Montreal, Quebec,Canada.
Berry, J. and K. Houston (1995). Mathematical Modelling. Bristol: J. W. Arrowsmith Ltd.
13
Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, Eylül 2014, Sayı 31, 1 - 17
Berry, J. (2002). Developing mathematical modelling skills: The role of CAS. Zentralblatt
für Didaktik der
Mathematik-ZDM, 34(5), 212-220. Blomh0j, M. (1993). Modelling of Dynamical Systems at O-Level. In J. de Lange, C. Keitel,
I. Huntley, & M. Niss (Eds.), Innovation in mathematics education by modelling and
applications. (pp. 257-268). Chichester: Ellis Horwood. Blomh0j, M. and Kjeldsen, T. H. (2006). Teaching mathematical modelling through project
work - Experiences from an in-service course for upper secondary teachers,
Zentralblatt für Didaktik der Mathematik, 38(2), 163-177. Blum, W. (2002). ICMI Study 14: Applications and modelling in mathematics education-
Discussion document. Educational Studies in Mathematics, 51, 149-171. Borromeo-Ferri, R. (2007). Personal experiences and extra-mathematical knowledge as an
influence factor on modelling routes of pupils. Pitta-Pantazi and Philippou, Eds.,
Proceedings of the Fifth Congress of the European Society for Research in
Mathematics Education in Larnaca, Cyprus,2080-2089. Borromeo-Ferri, R. B. (2006). Theoretical and Empirical Differentiations of Phases in the
Modelling Process. In Kaiser, G., Sriraman B. & Blomhoij, M. (Eds.) Zentralblatt für
Didaktik der Mathematik. 38(2), 86-95.
Bukova Güzel, E. (2011). An examination of pre-service mathematics teachers' approaches to
construct and solve mathematical modelling problems, Teaching Mathematics and Its
Applications, doi:10.1093/teamat/hrq015. Clement, J. (1982). Algebra Word Problem Solutions: Thought Processes Underlying a
Common Misconception. Journal for Research in Mathematics Education. 13, 16- 30. English, L. D. (2006). Mathematical Modelling In The Primary School: Children's
Construction Of A Consumer Guide. Educational Studies in Mathematics, 63(3), 303¬323.
Fox, J. (2006). A justification for Mathematical Modelling Experiences in the Preparatory Classroom. Grootenboer, Peter and Zevenbergen, Robyn and Chinnappan, Mohan, Eds. , Proceedings 29th annual conference of the Mathematics Education Research Group of Australasia 1, 21-228.
Graham, A. T. and Thomas, M. O. J. (2000). Building a Versatile Understanding of Algebraic Variables with a Graphic Calculator. Educational Studies in Mathematics, 41, 265¬282.
14
Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, Eylül 2014, Sayı 31, 1 - 17
Henn, H-W. (2007). Modelling pedagogy-overview. In: W. Blum, P. Galbraith, H.-W. Henn, & M. Niss, (Eds), Modelling and Applications in Mathematics Education (pp. 322¬324). New York: Springer. Hestenes, D. (1987). Toward a modelling theory of physics instruction. American Journal of
Physics. 5(55), 440-454.
Hıdıroğlu, Ç. N. (2012). Teknoloji destekli ortamda matematiksel modelleme problemlerinin çözüm süreçlerinin analiz edilmesi: Yaklaşım ve düşünme süreçleri üzerine bir açıklama. Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi, İzmir. Kapur, J. N. (1982). The Art of Teaching the Art of Mathematical Modeling. International
Journal
of Mathematical Education in Science and Technology. 13(2), 185-192. Lesh, R. and Doerr, H. M. (2003). A modeling perspective on teacher development. In R. A. Lesh & H. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3-33). Mahwah, NJ: Lawrence Erlbaum.
Lingefjârd, T.
(2006)
. Faces of mathematical modeling. Zentralblatt für Didaktik der
Mathematik-ZDM, 38(2), 96-112. MaaB, K. (2006). Modelling in classrooms: What do we want the students to learn? In C. Haines. Et. Al. (Eds.), Mathematical Modelling (ICTMA 12): Engineering and Economy. Chichester: Ellis Horwood. MEB (2005a). Ortaöğretim matematik (9-12. Sınıflar) dersi öğretim programı. Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı, Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
MEB (2005b). İlköğretim matematik (4-8. Sınıflar) dersi öğretim programı. Milli Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı, Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
Peter Koop, A. (2004). Fermi problems in primary mathematics classrooms: Pupils' interactive modelling processes. In I. Putt, R. Farragher, & M. McLean (Eds.), Mathematics education for the third millenium: Towards 2010 (Proceedings of the 27th annual conference of the Mathematics Education Research Group of Australasia, pp. 454-461). Townsville, Queensland: MERGA.
Pollak, H. (1979). The Interaction between Mathematics and other School Subjects. UNESCO
(Ed.). New Trends in Mathematics Teaching IV. Paris. Schoenfeld, A. H. (1992). Learning to Think Mathematically: Problem Solving, Metacognition, and Sense Making in Mathematics. D. A. Grouws (Ed.). Handbook of
15
Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, Eylül 2014, Sayı 31, 1 - 17
Research on Mathematics Teaching and Learning (s. 334- 370). Macmillan: New
York.
Tuminaro, J. and Redish, E. (2003). Understanding students' poor performance on mathematical problem solving in physics. Published in Proceedings of 2003 Physics Education Conference, Madison, Wisconsin, 720, 113-116, 2004.

Thank you for copying data from http://www.arastirmax.com