Buradasınız

Matematiksel Modellemede GeoGebra Kullanımı: Boy-Ayak Uzunluğu Problemi

Using GeoGebra in Mathematical Modeling: The Height-Foot Length Problem

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.9779/PUJE607
Abstract (2. Language): 
The integration of mathematical modeling with technology and the advantages of technology to modeling process have become more important in today's fast-growing society. The studies about how the technology affects the mathematical modeling process and how to use the technology more effectively are of importance. The purpose of this study is to illustrate how to use GeoGebra in the process of mathematical modeling. In this study, GeoGebra was used in solution process of a problem designed in accordance with mathematical modeling and the intended uses of GeoGebra were described in the mathematical modeling process. The solution of the Height-Foot Length Problem designed by the researchers was carried out taking into account the seven step modeling process. With this study, it was exemplified how the mathematics teachers will be able to use the mathematical modeling and the GeoGebra in their lessons. It is thought that GeoGebra will contribute to the uncovering and the development of modeling skills and will be provided more conceptual and mathematical thinking by preventing losing in procedures.
Abstract (Original Language): 
Matematiksel modelleme ile teknolojinin entegrasyonu ve modelleme sürecine teknolojinin sağladığı avantajlar günümüzün hızlı gelişen toplumunda daha önemli hale gelmektedir. Teknolojinin matematiksel modelleme sürecini nasıl etkilediği ve daha etkili nasıl kullanılabileceğine ilişkin çalışmalar önem taşımaktadır. Bu çalışmanın amacı, matematiksel modelleme sürecinde GeoGebra’nın nasıl kullanılabileceğini örneklemektir. Çalışmada, matematiksel modellemeye uygun olarak tasarlanan bir problemin çözüm sürecinde GeoGebra’dan yararlanılmış ve GeoGebra’nın süreçteki kullanım amaçları açıklanmıştır. Araştırmacılar tarafından tasarlanmış Boy-Ayak Uzunluğu probleminin çözümü, yedi basamaklı matematiksel modelleme süreci dikkate alınarak gerçekleştirilmiştir. Çalışma ile öğretmenlerin matematiksel modelleme ile GeoGebra’yı derslerinde nasıl kullanabilecekleri örneklenmeye çalışılmıştır. GeoGebra’nın modelleme becerilerinin ortaya çıkarılmasında ve geliştirilmesinde katkı sağlayacağı ve işlemler içinde kaybolmayı önleyerek daha fazla kavramsal ve matematiksel düşüncenin ortaya çıkarılmasını sağlayacağı düşünülmektedir.
29
44

REFERENCES

References: 

Baki, A. (2002). Öğrenen ve Öğretenler İçin Bilgisayar Destekli Matematik. BİTAV-Ceren Yayın
Dağıtım, İstanbul.
Barbosa, J. C. (2008). What do students discuss when developing Mathematical Modelling
activities?. Electronically published, State University of Feira de Santana. Can be
downloaded from <http://site.educ.indiana.edu/Portals/161/Public/Barbosa.pdf> erişim
tarihi 20.03.2012.
Berry, J. ve Houston K. (1995). Mathematical Modelling. Bristol: J. W. Arrowsmith Ltd.
Berry, J. (2002). Developing Mathematical Modelling Skills: The Role of CAS. Zentralblatt für
Didaktik der Mathematik-ZDM. 34(5), 212-220.
Blum, W. ve Niss, M. (1989). Mathematical Problem Solving, Modelling, Applications, and Links
to Other Subjects – State, Trends and Issues in Mathematics Instruction. M. Niss, W. Blum
ve I. Huntley (Ed.). Modelling Applications and Applied Problem Solving. (s.1-19). England:
Halsted Pres.
Blum, W. (2002). ICMI Study 14: Applications and Modelling in Mathematics Education- Discussion
Document. Zentralblatt für Didaktik der Mathematik. 34(5), 229-239.
Borromeo-Ferri, R. B. (2007). Personal Experiences and Extra-Mathematical Knowledge as an
Influence Factor on Modelling Routes of Pupils. CERME 5 (2007) Working Group 1. 2080-
2089.
Cheng, A. K. (2010). Teaching and Learning Mathematical Modelling with Technology,
Nanyang Technological University. <http://atcm.mathandtech.org/ep2010/
invited/3052010_18134.pdf> erişim tarihi 20.03.2012.
English, L. D. ve Watters, J. J. (2004). Mathematical Modeling in the Early School Years. Mathematics
Education Research Journal, 16(3), 59-80.
Galbraith, P., Stillman, G., Brown, J., & Edwards, I. (2007). Facilitating middle secondary modelling
competencies. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modelling:
ICTMA 12: Education, Engineering an Economics, 130-140, Woodhead Publishing.
Greer, B. (1997). Modelling Reality in Mathematics Classroom: The Case of Word Problems.
Learning and Instruction, 7, 293- 307.
Hıdıroğlu, Ç. N. (2012). Teknoloji Destekli Ortamda Matematiksel Modelleme Problemlerinin Çözüm
Süreçlerinin Analiz Edilmesi: Yaklaşım ve Düşünme Süreçleri Üzerine Bir Açıklama. Yüksek
Lisans Tezi. Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir.
Kabaca, T. ve Aktümen, M. (2010) Using GeoGebra as an Expressive Modeling Tool: Discovering
the Anatomy of the Cycloid’s Parametric Equation. GeoGebra The New Language For The
Third Millennium. 1(1), 63-82.
Kabaca, T., Aktümen, M., Aksoy, Y. ve Bulut, M., (2010), GeoGebra ve GeoGebra ile Matematik
Öğretimi. Gülseçen, S., Ayvaz Reis, Z. ve Kabaca, T. (Eds), First Eurasia Meeting Of GeoGebra
(EMG): Proceedings, 79-115. İstanbul Kültür Üniversitesi Yayınları.
Lingefjärd, T. (2000). Mathematical Modeling by Prospective Teachers Using Technology.
Electronically published doctoral dissertation, University of Georgia. <http://ma-serv.did.
gu.se/matematik/thomas.htm> erişim tarihi 28.11.2010.
Maaß, K. (2006) What are Modelling Competencies? Zentralblatt für Didaktik der Mathematik. 38
(2),113-142.
MEB, (2006). Ortaöğretim Matematik Dersi Öğretim Programı. Ankara: MEB Basımevi.
KAYNAKÇA
Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, Sayı 36 (Temmuz 2014/II) 41
Matematiksel Modellemede GeoGebra Kullanımı: Boy-Ayak Uzunluğu Problemi
Mousoulides, N., Christou, C., ve Sriraman, B., (2006). From Problem Solving to Modelling- a Meta
Analysis. <http://www.umt.edu/math/reports/sriraman/mousoulideschristousriraman.
pdf> erişim tarihi 26.11.2010
National Council of Teachers of Mathematics (1979). Applications In School Mathematics: 1979
Yearbook. Reston, VA: National Council of Teachers of Mathematics.
National Council of Teachers of Mathematics (1989). Curriculum and Evaluation Standards for
School Mathematics. Reston, VA: National Council of Teachers of Mathematics.
National Council of Teachers of Mathematics (1998). Principles and standards for school
mathematics: Discussion draft. Reston, VA: Author.
National Council of Teachers of Mathematics (2000). Curriculum and Evaluation Standards for
School Mathematics. Reston, VA: NCTM Publications.
Peter-Koop, A. (2004). Fermi Problems in Primary Mathematics Classrooms: Pupils’ Interactive
Modelling Processes. In I. Putt, R. Farragher, & M. McLean (Eds.), Mathematics education
for the Third Millenium: Towards 2010 (Proceedings of the 27th Annual Conference of
the Mathematics Education Research Group of Australasia, pp. 454-461). Townsville,
Queensland: MERGA.
Schoenfeld, A. H. (1992). Learning to Think Mathematically: Problem Solving, Metacognition, and
Sense Making in Mathematics. D. A. Grouws (Ed.). Handbook of Research on Mathematics
Teaching and Learning (s. 334– 370). Macmillan: New York.
Skolverket (1997). Kommentar till grundskolans kursplan och betygskriterier i matematik
[Commentary on the Comprehensive School Curriculum and Marking Criteria in
Mathematics]. Stockholm: Liber Utbildningsförlaget.
Sriraman, B. (2005). Conceptualizing the Notion of Model Eliciting. Proceedings of the Fourth
Congress of the European Society for Research in Mathematics Education. Sant Feliu de
Guíxols, Spain.
Stillman, G., Galbraith, P., Brown, J. ve Edwards, I.(2007). A Framework for Success in Implementing
Mathematical Modelling in the Secondary Classroom. Mathematics: Essential Research,
Essential Practice. 2, 688- 697.
Swedish Ministry of Education. (1994). Kursplaner för grundskolan. [Syllabus for Subjects in the
Comprehensive School Curriculum]. Stockholm, Fritzes.
Thomas, G. B., Weir, M. D., Hass, J. ve Giordano, F. R. (2010). Thomas Calculus 1 (2. Baskı, Çeviri:
Recep Korkmaz). Beta Basım A.Ş. İstanbul.
Verschaffel, L., De Corte, E. ve Borghart, I. (1997). Pre-service Teachers’ Conceptions and Beliefs
about the role of Real-World Knowledge in Mathematical Modeling of School Word
Problems. Learning and Instruction. 7(4), 339-359.
Zawojewski, J. S., Lesh, R., ve English, L. D. (2003). A Models and Modelling Perspective on the Role
of Small Group Learning. In R. A. Lesh & H. Doerr (Eds.), Beyond Constructivism: Models and
Modeling Perspectives on Mathematics Problem Solving, Learning and Teaching, (pp. 337-
358). Mahwah, NJ: Lawrence Erlbaum.

Thank you for copying data from http://www.arastirmax.com