Buradasınız

Bağlam ve Görsel Anlatımların Matematiksel Sözel Problem Çözümüne Etkisi

The Influence of Visual Representations and Context on Mathematical Word Problem Solving

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
The aim of this study is to explore problem solving performance of fifth graders on mathematical word problems in familiar and unfamiliar context with or without visual representations. 867 fifth graders in Turkish Republic of Northern Cyprus were the participants. The participants sat, on a voluntary basis, for a 30 item multiple choice test in which there were 6 operation items and 24 result-unknown type of word problems. All the participants answered the same questions under the same conditions and scored in the same manner. One-way repeated measures ANOVA results showed that the students showed better performances when solving familiar word problems than solving comparable unfamiliar word problems. The results also showed that the presence of visual representations in word problems strongly influenced students' problem solving performances in a positive way. It was observed that visual representations contributed a lot especially when the context of the word problems was unfamiliar.
Abstract (Original Language): 
Bu çalışmanın amacı, görsel anlatımların sözel problemlerde yer alıp almaması ve problemlerde alışılagelmiş/tanıdık veya alışılmışın dışında/aşina olunmayan bağlamların kullanılmasının ilkokul 5. sınıf öğrencilerinin matematiksel sözel problem çözümlerini ne şekilde etkilediğini incelemektir. Bu amaçla Kuzey Kıbrıs Türk Cumhuriyeti'ndeki 867 beşinci sınıf öğrencisine, gönüllülük esasına göre, aynı ortam ve koşullarda, 6'sı işlem, 24'ü sözel problem olan 30 soruluk bir test uygulanmıştır. Tekrarlı ölçümlere sahip tek faktörlü varyans analizinden elde edilen bulgular, öğrencilerin alışılagelmiş/tanıdık bağlamlı sorulardaki performanslarının alışılmışın dışında/aşina olunmayan sorulardan çok daha iyi olduğunu göstermiştir. Bulgular aynı zamanda sözel problemlerin görsel anlatımlarla desteklenmesinin problem çözümüne olumlu katkısı olduğunu göstermiştir. Diğer yandan görsel anlatımların en çok alışılmışın dışında/aşina olunmayan bağlamlı problem çözümüne katkısı olduğu gözlenmiştir.
91-100

REFERENCES

References: 

Altun, M. (1995). İlkokul 3., 4. ve 5. SınıfÖğrencilerinin Brown, J. S., Collins, A., & Duguid, P. (1989). Situated
Problem Çözme Davranışları Üzerine cognition and the culture of learning.
Bir Araştırma. Doktora Tezi, Ankara, Educational Researcher, 17(1), 32-41.
Hacettepe Üniversitesi Sosyal Bilimler Busbridge, J. A., & Özçelik, D.A. (1997). İlköğretimde
Enstitüsü. Matematik Öğretimi (Çev. D.A., Özçelik),
Antonietti, A. (1991). Why does mental visualization YÖK. Dünya Bankası Milli Eğitimi Geliştirme
facilitate problem-solving? In
R
. Logie & M. Projesi Hizmet Öncesi Öğretmen Eğitimi,
Denis (Eds.), Mental images in human cognition (pp. Ankara.
211-229), Holland: Elseveir Science Pub. Carpenter, T. P., Kepner, H. S., Corbitt, M. K.,
Baykul, Y. ve Sulak, S. (2006). "Problem Çözme Lindquist, M M., & Reys, R. E. (1980) Solving
Stratejilerinin İlköğretimde Problem verbal problems: Results and implications
Çözme Başarısına Etkisi", Ulusal Sınıf for National Assessment. Arithmetic
Öğretmenliği Kongresi Bildiri Kitabı, C. 1, Ankara, Teacher, 28, 8-12. Kök Yayıncılık.
Choi, J.I., & Hannafin, M. (1997). The Effects of
Instructional Context and Reasoning Complexity on Mathematics Problem-Solving. Educational Technology Research and Development, 45(3), 43-55.
Cockcroft, W.H. (1982). Mathematics counts: Report of the committee of inquiry into the teaching of mathematics in schools. London: HMSO.
Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Academic Press.
Cordova, D. I., & Lepper, M. R. (1996). Intrinsic Motivation and the Process of Learning: Beneficial Effects of Contextualization, Personalization, and Choice. Journal of Education Psychology, 88(4), 715-730.
Garderen, D. V., & Montague, M. (2003). Visua-spatial representation, mathematical problem solving, and students of varying abilities. Learning Disabilities Research & Practice, 18(4), 246-254.
Geary, D. C. (1994). Children's mathematical development: Research and practical applications. Washington, DC: American Psychological Association.
Hembree, R. (1992). Experiments and relational studies in problem solving: a meta-analysis. Journal for Research in Mathematics Education, 23, 242-273.
Kaufmann, G. (1990). Imagery effects on problem solving. In J. Hampson (Ed.), Imagery: Current developments (pp. 169-196). London: Routledge.
Kaur, B. (1997). Difficulties with problem solving in mathematics. The Mathematical Educator, 2(1),
93-112.
Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: Effects of representations on quantitative reasoning. The Journal of the Learning Sciences, 13(2), 129-164.
Ku, H-Y., & Sullivan, H. J. (2002). Student
Performance and Attitudes Using Personalized Mathematics Instruction.
Educational Technology Research and Development, 50(1), 21-33.
Lopez, C. L., & Sullivan, H. J. (1992). Effect of Personalization of Instruction Context on the Achievement and Attitudes of Hispanic Students. Education Technology Research and Development, 40(4), 5-13.
Lowrie, T. (1996). The use of visual imagery as a problem-solving tool: Classroom implementation. Journal of Mental Imagery, 20,
127-140.
Lowrie, T. (1998). The importance of visual processing in non-routine and novel problem solving situations. In A. McIntosh & N. Ellerton (Eds.), Research in mathematics
education: Some current trends (pp. 186-210). Perth: MASTEC Publication. Lowrie, T., & Kay, R. (2001). Relationship between visual and nonvisual solution methods and difficulty in elementary mathematics. The Journal of Educational Research, 94(4), 248-255. Moyer, P.S. (2000). Communicating mathematically: Children's literature as a natural connection. The Reading Teacher, 54(3), 246-255. Nathan, M J., Kintsch, W., & Young, E. (1992). A theory of algebra word problem comprehension and its implications for the design of computer learning environments. Cognition and Instruction, 9(4), 329-389. Nathan, M.J., Koedinger, K.R. & Tabachneck-Schijf, H.J.M. (1997). Teachers' and Researchers' beliefs of early algebra development. In the Proceedings to the Nineteenth Annual Meeting of the Cognitive Science Society (pp 554-559), Hillsdale, NJ: Erlbaum.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics, Reston, VA: Author. Overholt, J., Aaberg, N., & Lindsey, J. (1990). Maths Stories for Problems Solving Success. Ready-to-Use Activities for Grades 7-12, San Francisco, John Wiley & Sons,Inc. Pawley, D., Ayres, P., Cooper, M., & Sweller, J. (2005). Translating words into equations: A cognitive load theory approach. Educational Psychology, 25, 75-97. Pirie, S. E. B., & Kieren, T. E. (1992). Watching Sandy's understanding grow. JournalofMathematical Behavior, 11, 243-257. Polya, G. (1957). How to Solve It? (2nd ed.).
Princeton, N.J.: Princeton University Press. Polya, G. (1973). How to solve it: A new aspect of mathematical method (2nd ed.). Princeton University Press. Posamentier, A. S., Krulik, S. (1998). Problem-Solving Strategies for Efficient and Elegant Solutions, California, Corwin Press, Inc. Presmeg, N. C. (1986). Visualisation in high school mathematics. For the Learning of Mathematics, 6(3), 42-46.
Presmeg, C. N., & Canas-Balderas, P. E. (2001). Visualization and affect in nonroutine problem solving. Mathematical Thinking and
Learning, 3(4), 289-313.
Rieber, L. P. (1995). A historical review of visualization in human cognition. Educational Technology Research & Development, 43(1), 45-56. Riley, M. S , & Greeno, J. G. (1988). Developmental analysis of understanding language about quantities and of solving problems. Cognition and Instruction, 5(1), 49-101. Ross, S. M. Mccormick, D., & Krisak, N. (1986). Adapting the Thematic Context of
98
• ••III
Pamukkale University Journal of Education, Number 30 (July 2011/11)
The Influence of Visual Representations and Context on Mathematical Word Problem Solving
Mathematical Problems to Student Tabachneck, H. J. M , Koedinger, K. R., & Nathan,
Interests: Individualized Versus Group- M. J. (1994). Toward a theoretical account
Based Strategies. Journal of Educational Research, of strategy use and sense making in
79(4), 245-252. mathematics problem solving. In Proceedings
Schoenfeld, A. H. (1985). Mathematical problem solving. of the Sixteenth Annual Conference of the Cognitive Science
Orlando, FL: Academic Press. Society (pp. 836-841). Hillsdale, NJ: Lawrence
Silver, E. A. (1987). Foundations of cognitive theory Erlbaum Associates, Inc.
and research for mathematics problem- Tertemiz, N. (1994). İlkokullarda Aritmetik
solving instruction. In A. H. Schoenfeld Problemlerini Çözmede Etkili Görülen Bazı
(Ed.), Cognitive Science and Mathematics Education. Faktörler, Yayınlanmamış Doktora Tezi,
Hillsdale, NJ: Erlbaum. Ankara, Hacettepe Üniversitesi, Sosyal
Sweller, J., & Low, R. (1992). Some cognitive factors Bilimler Enstitüsü.
relevant to mathematics instruction. Wiest, L. R. (2002). Aspects of word-problem
Mathematics Education Research Journal, 4, 83-94. context that influence children's problem-
Sweller, J., Van Merrienboer, J. J. G., & Paas, F. G. solving performance. FOCUS on Learning Problems
W. C. (1998). Cognitive architecture and in Mathematics, 24(2), 38-52.

Thank you for copying data from http://www.arastirmax.com