Buradasınız

SAKARYA HAVZASI AYLIK YAĞIŞLARININ OTOREGRESİF MODELLEMESİ

AUTOREGRESSIVE MODELLING OF MONTHLY RAINFALL IN SAKARYA BASIN

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, periodic autoregressive models were established to predict future behaviour of monthly rainfall data of Sakarya Basin which is one of the big and important basin in Turkey. Mathematical equations of the Periodic Autoregressive Models (PAR) were also determined. Optimum models were selected based on Akaike Information Criterion (AIC). Although the parameters are calculated according to "maximum probability method" in AIC, "moments method" was used in this study; the comparison of the results of both mentioned parameter estimation methods was thought to be considered in another study's scope. The Port Manteau lack of fit test for the selected models have indicated that residuals are white noise. By using the selected models for the stations, 50 set of synthetic series which have the same length with the historical series for the monthly average rainfalls have been generated, and statistical characteristics (mean, standard deviation, autocorrelation structure) of these synthetic series have been compared with statistical characteristics of historical series. By determining the stochastic models of monthly average rainfall of 25 stations, 4 different PAR models were obtained, namely as PAR(0), PAR(1), PAR(2) and PAR(3)
Abstract (Original Language): 
Bu çalışmada, geleceğe yönelik tahminler yapabilmek amacıyla Türkiye'nin önemli büyük havzalarından biri olan Sakarya Havzası'na ait aylık yağışların periyodik otoregresif modelleri (PAR) belirlenmiş ve belirlenen model tiplerine ait matematiksel ifadeler elde edilmiştir. Optimum modeller Akaike Bilgi Kriteri (AIC) değerlerine göre seçilmiştir. Her ne kadar AIC'de parametreler "en büyük olabilirlik yöntemi" ne göre hesaplanıyorsa da, bu çalışmada, "momentler yöntemi" kullanılmış; anılan her iki parametre tahmin yönteminin vereceği sonuçların karşılaştırılması diğer bir çalışma kapsamında düşünülmüştür. Seçilen modellerin uygunluk testleri Port Manteau testi ile artık serilerin bağımsızlığı kontrol edilerek yapılmıştır. Her istasyon için seçilen modeller kullanılarak tarihi serilerle aynı uzunluğa sahip 50'şer adet sentetik seri üretilmiş ve bu sentetik serilerle tarihi serilerin istatistiksel karakteristikleri (ortalama, standart sapma, korelasyon) karşılaştırılmıştır. 25 istasyona ait aylık yağışların periyodik otoregresif modellerinin belirlenmesi sonucunda PAR(0), PAR(1), PAR(2) ve PAR(3) olmak üzere 4 farklı PAR modeli elde edilmiştir.
117
126

REFERENCES

References: 

Bacanlı, Ü, G., Baran, T. 2004. Stokastik Modellerde Yıllık Akım Verilerinde Uygunluk Kriterlerinin Değerlendirilmesi, IV Ulusal Hidroloji Kongresi, 23-25 Haziran, İstanbul, Türkiye, 215¬225.
İçağa, Y. 2003. Akarçay Havzası Yağış-Akış İlişkilerinin Modellenmesi, I. Ulusal Su Mühendisliği Sempozyumu, 22-26 Eylül, İzmir,
Türkiye, 203-214.
Karabörk, Ç. ve Kahya, E. 1998. Göksu Nehrinin Yıllık ve Aylık Akımlarının Stokastik Modellemesi, S. Ü. Müh.-Mim. Fak. Dergisi 13 (1), Konya.
Nguyen, V.T.V. and Rouselle, J. 1981. A Stochastic Model For the Time Distibution of Hourly Rainfall Depth, Water Resources Research 17:399-409.
Salas, J.D.,
Delleur
, J.W., Yevjevich, V., Lane, W.L. 1980. Applied Modeling of Hydrologic Time Series, Water Resources Publications, Littleton, Co, 484.
Salas, J.D., Obeysekera, J.T.B. 1982. Arma Model Identification of Hydrologic Time Series, Water Resources Research 18: 1011-1021.
Te, W. G., Singh, V.P. 1994. An Autocorrelation
Function Method For Estimation Parameters of Autoregressive Models, Water Resources Management 32: 33-56.
Yücel, A., Topaloğlu, F. 1999. Adana İli Uzun
Yıllık (1929-1990) Günlük Minimum, Ortalama ve
Maksimum Sıcaklık Verilerinin Zaman Serisi Analizi İle İncelenmesi, Turkish Journal of Agriculture And Forestry 23 (4): 863-868.
Yürekli, K. and Öztürk, F.
2003
. Stochastic Modeling of Annual Maximum and MinimumStreamflow of Kelkit Stream, Water International 28 (4): 433-441.

Thank you for copying data from http://www.arastirmax.com