Buradasınız

ENDOSKOPiK GORUNTULERiN DEGERLENDiRiLMESiNDE GORUNTU i§LEME TEMELLi AKILLI BiR KARAR DESTEK SiSTEMi

AN INTELLIGENT DECISION SUPPORT SYSTEM BASED ON IMAGE PROCESSING FOR EVALUATING OF THE ENDOSCOPIC IMAGES

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, a decision support system which helps the physician to determine the location of a polyp on the colonoscopic video images is presented. The system is composed of neural network classifier and features extracted from wavelet transform co-occurrence matrices. The proposed methodology is applied to a sequence of colonoscopic video frames which have normal and abnormal formations. The application results are evaluated with respect to the sensitivity and specificity analysis. As a result of the evaluation criterion, 90.2 % sensitivity and 88.7 % specificity values are obtained by using statistical features of the wavelet transform co occurrence matrices and neural networks.
Abstract (Original Language): 
Bu gali§mada, kolonoskopik video goruntulerindeki poliplerin yerlerini belirleyen, hekime yardimci akilli bir karar destek sistemi sunulmu§tur. Sistem, dalgacik d6nu§umu e§ olu§um matrislerinden gikanlan oznitelikler ile yapay sinir aglari siniflandincisindan olu§maktadir. Onerilen sistem polip ve normal dokularin bulundugu bir dizi kolonoskopik video goruntusune uygulanmi§tir. Elde edilen deneysel sonuglar ozgulluk ve duyarlilik analizi ile degerlendirilmiijtir. Kullanilan degerlendirme kriterince gergekle§tirilen butun uygulamalarin sonucunda ortalama % 90.2 duyarlilik ve % 88.7 ozgulluk degerleri elde edilmi§tir.
33
42

REFERENCES

References: 

Asari, K. V. 2000. "A fast and accurate segmentation technique for the extraction of gastrointestinal lumen from endoscopic images", Medical Engineering & Physics, Vol. 22, pp. 89-96.
Cohen, A., Daubechies, I. and Feauveau, J. C. 1992. Biorthogonal bases of compactly supported wavelets, Commun. Pure Appl. Math. Vol. 45, pp. 485-560.
Enderwick, C. and Micheli-Tzanakou, E. 1997. "Classification of mammographic tissue using shape and texture features," Proc. 19th Annu. Int. Conf. IEEE Engineering Medicine Biology Society, pp.
810-813.
Esgiar, A.N., Naguib, R.N.G., Sharif, B.S., Bennett, M.K., Murray, A. 2002. "Fractal analysis in the detection of colonic cancer images". IEEE Trans Info Technol Biomed; 6: 54-8.
Fortin, C. and Ohley, W. 1991. "Automatic segmentation of cardiac images: Texture mapping," Proc. IEEE 17th Annu. Northeast Bioeng. Conf.
Haralick, R.M., Shanmugam, K.K., Dinstein, I. 1973. Texture features for image classification. IEEE Trans. Syst. Man Cyb. 8 (6), 610-621.
Houston A. G. and Premkumar, S. B. 1991. "Statistical interpretation of texture for medical applications," presented at the Biomedical Image Processing and Three Dimensional Microscopy, San Jose, CA..
Internet: Tibbi Onkoloji Dernegi, http://www.medonk.org/, Eri§im tarihi: 25 Haziran 2006.
Internet: Tip 2000. Saglik Platformu, Kalin barsak (Kolon), rektum ve anus kanserleri,
Muhendislik Bilimleri Dergisi 2009 15 (1) 33-42
41
Journal of Engineering Sciences 2009 15 (1) 33-42
Endoskopik Goruntulerin Degerlendirilmesinde Goruntu i§leme Temelli Akilli Bir Karar Destek..., A. Sengur, i. Turkoglu ve M. C. ince
http://www.tip2000.com/tedavi/kolon-rektum/kanser.htm, Eri§im
tarihi: 26 Haziran 2006.
Karkanis, S., Galousi, K. and Maroulis, D. 1999. "Classification of endoscopic images based on texture spectrum", ACAI'99, Workshop on Machine Learning in Medical Applications, Chania, Greece.
Karkanis, S.A., Magoulas, G.D., Iakovidis, D.K., Karras, D.A., Maroulis, D.E. 2001. "Evaluation of textural feature extraction schemes for neural network-based interpretation of regions in medical images", IEEE International Conference in Image Processing (ICIP) Proceedings, pp. 281-284, Thessaloniki, Greece.
Karkanis, S.A., Iakovidis, D.K., Maroulis, D.E., Karras, D.A. and Tzivras, M. D. 2003. "Computer aided tumor detection in endoscopic video using color wavelet features", IEEE Transactions on
Information Technology in Biomedicine, Vol. 7,
No. 3.
Krishnan, S. M. Yap, C. J., Asari, K. V. and Goh, P. M. Y. 1998. "Neural network based approaches for the classification of colonoscopic images", Proceedings of the 20th annual international conference of the IEEE Engineering in Medicine and Biology Society, 20: 1678- 1680.
Lachmann, F. and Barillot, C. 1992. "Brain tissue classification from MRI data by means of texture analysis," in Proc. Medical Imaging VI: Image Processing, Vol. 1652. Newport Beach, CA, pp.
72-83.
Sujana, H., Swarnamani, S. and Suresh, S. 1996. "Artificial neural Networks for the classification of liver lesions by image texture parameters,"
Ultrasound Med. Biol., Vol. 22, pp. 1177-1181.

Thank you for copying data from http://www.arastirmax.com