Buradasınız

Derivation of Equations for Flexure and Shear Deflections of Simply Supported Beams

Basit Mesnetli Kiri§lerde Egilme ve Kaymadan Dolayi Olu§an Sehim Denklemlerinin Bulunmasi

Journal Name:

Publication Year:

Abstract (2. Language): 
Shear deflection of wood beams generally is exluded in plannning calculations. Ignoring shear deflection could cause significant errors, expecially for short and thick beams. In this study, two deflection functions due to flexure and shear of simply supported composite beam subjected to single force are obtained analytically. Wood being high shear modulus according to other material is selected for sample problem. The deflections the mid point of the beam are calculated to see the effect of shear by using the obtained functions for 0, 15, 30, 45, 60 and 90 orientation angles. Also, bending stresses at the mid point of the short beam are given for 0, 15, 30, 45, 60 and 90 orientation angles. It is shown that the magnitude of shear deflection depends on force, length and height of the beam. The shear effect is the smallest for 45 orientation angle and the biggest for 0 orientation angle.
Abstract (Original Language): 
Kiri§ uygulamalarinin genelinde kaymadan dolayi olu§an sehimler ihmal edilir. Fakat; yuksek kayma modulune sahip, kisa ve kalin kiri§lerde kaymadan dolayi olu§an sehimin ihmal edilmesi gok buyuk hatalara neden olmaktadir. Bu gali§mada her iki tarafinda mesnetlenmi§ orta noktasindan tekil yuke maruz kompozit kiri§lerdeki egilme ve kaymadan dolayi ortaya gikan sehim denklemleri analitik olarak elde edilmi§tir. Ornek malzeme olarak kayma modulu diger malzemelere gore yuksek olan ah§ap segilmi§tir. Kaymanin etkisini incelemek igin, elde edilen fonksiyonlar kullanilarak, kiri§in orta noktasindaki maksimum sehimler 0, 30, 45, 60 and 90 oryantasyon agilari ign elde edilmi§tir. Ayni zamanda kayma etkisinin en fazla oldugu kisa kiri§in orta noktasindaki egilme gerilmeleri 0, 30, 45, 60 ve 90 oryantasyon aglari igin verilmi§tir. Kaymadan dolayi olu§an sehimin; kiri§e uygulanan yuke, kiri§in uzunluguna ve yuksekligine gore degi§tigi tespit edilmi§tir. Kayma etkisi; 45 oryantasyon agi-sinda en kuguk, 0 oryantasyon agsinda ise en buyuk olmaktadir.
187
193

REFERENCES

References: 

Altenbach, H. 2000. On the determination of transverse shear stiffnesses of orthotropic plates, Zeitschrift fur Angewandte Mathematik and Physik, 51 (4), 629-649.
Aydogan, M. 1995. Stiffness-matrix formulation of beams with shear effect on elastic foundation, Journal of Structural Engineering, 121 (9), 1265¬1270.
Biblis, E. J. 1997. Shear deflection of two species lami¬nated wood beams, Wood Science and Technol¬ogy. 1 (3), 231-238.
Esendemir, 0. 2004. An elastic-plastic stress analysis in a polymer-matrix composite beam of arbi¬trary orientation supported from two ends acted upon with a force at the mid point. Journal of Reinforced Plastics and Composites, 23 (6), 613-623.
Esendemir, 0. 2005. The effects of shear on the deflection of linearly loaded composite cantilever beam, Journal of Reinforced Plastics and Composites. 24 (11), 1159-1168.
Esendemir, 0., Usal, M.R., Usal, M. 2006. The effects of shear on the deflection of simply supported composite beam loaded linearly, Journal of Rein¬forced Plastics and Composites. 25 (8), 835-846.
Evangelas, J. Biblis, 1967. Shear deflection of two spe¬cies laminated wood beams, Wood Science and
Technology. 1 (3), 231-238.
Faella, C., Martinelli, E., and Nigro, E. 2003. Shear connection nonlinearity and deflections of steel concrete composite beams: a simplified method, Journal of Structural Engineering. 129 (1), 12-20.
Hiroaki, K., Tohru, N. 1993. Shear deflection of anisotropic plates. JSME Internatianal Journal Series A: Mechanics and Material Engineering. 36 (1). 73¬79.
Jones, R. M. 1975. Mechanics of composite materials. Mcgraw-Hill, Kogakusha, Tokyo.
Kill?, O., Aktas, A. and Dirikolu, M.H. 2001. An investigating of the effects of shear on the deflection of an orthotropic cantilever beam by use of aniso-tropic elasticity theory. Composites Science and
Technology. (61), 2055-2061.
Kubojima, Y., Ohtani, T., and Yoshihara, H. 2004. Effect of shear deflection on vibrational properties of compressed wood, Wood Science and Technol¬ogy. 38 (3), 237-244.
Lee, S.J, Reddy, J.N. 2004. Nonlinear deflection con¬trol of laminated plates using third-order shear deformation theory, International journal of Me¬chanics and Materials Design, 1 (1), 33-61.
Lekhnitskii, S.G. 1968. Anisotropic Plates, Gordon and Breach Science, New York.
Lekhnitskii, S.G. 1981. Theory of Elasticity of an Aniso-
tropic Body. Mir Publishers, Moscow. Liu, J.Y and Rammer, D.R. 2003. Analysis of wood cantilever loaded at free end, Wood and Fiber Science. 35 (3), 334-340. Machado, S. P., Cortinez, V.H. 2005. Non-linear model for stability of thin-walled composite beams with shear deformation, Thin-Walled Structures. (43),
1615-1645.
Nie, J. and Cai, C.S. 1998. Steel-concrete composite beams considering shear slip effects, Journal of Structural Engineering. 129 (4), 495-506. Nie, J., Cai, C.S. 2000. Deflection of cracked rc beams under sustained loading, Journal of Structural Engineering. 126 (6), 708-716. Onu, G. 2000. Shear effect in beam finite element on two-parameter elastic foundation, Journal of Structural Engineering. 126 (9), 1104-1107. Pilkey, W. D., Kang, W., Schramm, U. 1995. New structural matrices for a beam element with shear deformation, Finite Elements Journal of Structural Engineering, 121 (9). In Analysis and design, 19 (1), 25¬44.
Schramm, U., Kitis, L., Kang, W., Pilkey, W.D. 1994. On the shear deformation coefficient in beam the¬ory, Finite Elements in Analysis and Design. 16 (2),
141-162.
Thomas, W. H. 2002. Shear and flexural deflection equations for OSB floor decking with point load, Holz als Roh-Und Werstoff. 60 (3), 175-180.
Usal, M.R., Usal, M., Esendemir, 0. 2008. Static and dynamic analysis of simply supported beams, Journal of Reinforced Plastics and Composites, 27
(3): 263-276.
Wang, Y.C. 1998. Deflection of steel-concrete composite beams with partial shear interaction, Journal of Structural Engineering. 124 (10), 1159-1165.

Thank you for copying data from http://www.arastirmax.com