Buradasınız

Attepe Demir Cevheri Fiziksel Özelliklerinin Direkt İndirgenme Sürecinde Değişimi

Structural Changes Occuring During the Direct Reduction of Attepe Iron Ore

Journal Name:

Publication Year:

Abstract (2. Language): 
At present, most of the World's iron (over 95 %) is produced in blast furnaces where it is essential to use high grade coking coal which is in great demand, scarce and very expensive. In addition, the building of blast furnaces requires huge capital investments and because of their large sizes they are not flexible for limited operations. These led, since 1950s to the development of direct reduction processes which have reached a worldwide production of 60 million tons per annum. The iron produced by direct reduction can be used directly as raw material in electric arc furnaces as a replacement of scrap, thus increasing the steel quality. The fact that Turkey imports around 15 million tons of scrap per year for steel production, indicates alone the importance of investigation of suitability of domestic iron ores to the direct reduction. Since the direct reduction processes involve typical gas-solid reactions, the structure of iron ore and structural changes taking place during reaction within the solid phase, have great impact on process kinetics. This study therefore, deals with the changes observed before (i.e. during preheating) and during reduction in the surface area and porosity of Attepe iron ore.
Abstract (Original Language): 
Dünya toplam pik demir üretiminde en büyük paya (% 95) sahip olan yöntem, yüksek fırınla üretim prosesi olmasına rağmen, tüm dünyada koklaşabilir kömür rezervlerinin azalması, çevresel ve ekonomik kaygılar, 1950'li yıllardan itibaren sektörü alternatif metalik demir üretim yöntemleri arayışına itmiştir. Günümüzde, adı geçen bu alternatif yöntemlerden ticari anlamda kendini ispatlayabilmiş direkt indirgenme prosesleri yardımıyla üretilen metalik demir miktarı 60 milyon tona ulaşmıştır. Bu miktar beklentileri tam anlamıyla karşılamasa da yıllar içerisinde direkt indirgenmiş demirin, çelik üretimi amacıyla elektrik fırınlarında pik demirle beraber ergitilen hurda demire iyi bir alternatif olduğu belirlenmiştir. Ülkemizin çelik üretimi için yıllık yaklaşık 15 milyon ton hurda demir ithal ettiği göz önünde bulundurulduğunda, yerli cevherlerimizin direkt indirgenmeye uygunluğunun araştırılmasının önemi daha iyi anlaşılacaktır. Direkt indirgenme proseslerinin içerdiği reaksiyonlar, tipik gaz-katı reaksiyonları sınıfına dahil olduğundan, kullanılan cevher ve indirgenlerin nitelikleri proses kinetiği üzerinde önemli etkiye sahiptir. Bu çalışma, Attepe yöresine ait demir cevherinin porozite ve BET yüzey alanı gibi fiziksel özelliklerinde, indirgenme öncesi sıcaklıkla ve direkt indirgenme sırasında meydana gelen değişimleri konu almaktadır.
123
132

REFERENCES

References: 

Bohn, C. D.,
Cleeton
, J. P., Müller, C. R., Davidson, J. F., Hayhurst, A., N., Scott, S., A. and Dennis, J. S. 2010. The Kinetics of the Reduction of Iron Oxide by Carbon Monoxide Mixed with Carbon Dioxide. AlChE Journal. 56 (4), 1016-1029.
Brown, J., W. and Reddy, R., L. 1979. Electric Arc Furnace Steelmaking with Sponge Iron. Ironmaking and Steelmaking. 6 (1), 24-31.
Brunauer, S., Emmett, P.H. and Teller, E. 1938. Adsorption of Gases in Multimolecular Layers. J. Amer. Chem. Soc.
60, 309-319.
Doherty, R. D., Hutchings, K. M., Smith, J. D. and Yörük, S. 1985. The Reduction of Hematite to Wustite in a Laboratory Fluidized Bed. Metallurgical Transanctions B.16B (SEPTEMBER) 425-432.
Dölen, E. 1988. Analitik Kimya Volumetrik Yöntemler. Marmara Üniversitesi Eczacılık Fakültesi Yayınları, 296-240 s. İstanbul.
Edström, J., O. 1953. The Mechanism of Reduction of Iron Oxides. Journal of Iron Steel Inst. 175, 289-304.
Edström, J., O. and Bitsianes, G.
1955
. Solid State diffusion in the Reduction of magnetite. Journal of Metals. June,
760-765.
Evans, J., W., Song, S. and Leon-Sucre, C. E. 1976. The Kinetics of Nickel Oxide Reduction by Hydrogen: Measurements in a fluidized bed and gravimetric apparatus. Metallurgical Transactions B. 7B (MARCH), 55-65.
Fischer, R., B. and Peters, D., G. 1968. Quantitative Chemical Analysis, 12-13 s. Saunders, Philadelphia.
Goette, E., E. 1980. The Thriving Future for Direct Reduction İronmaking. Metals and Materials. 33-39.
Gojic, M. and Kozuh, S. 2006. Development of Direct
Reductio
n Processes and Smelting Reduction Processes for the Steel Production. Kem Ind. (55), 1-10.
Hutchings, K. M., Smith, J. D., Yörük, S. and Hawkins, R. J. 1987. Reduction of Hematite in a Bubbling Fluidized Bed Using H2-CO Mixtures. Ironmaking and Steelmaking. 14
(3), 103-109.
Ishida, M. and Wen, C., Y. 1968. Comparison of Kinetic and Diffusional Models for Solid-gas Reactions. AIChE Journal. 14 (2), 311-317.
Koo, C., H. and Evans J., W. 1979. Structural and Characteristic of some Venezuelan Iron Ores. Transactions ISIJ. 19, 95-101.
Levenspiel, O. 1999. Chemical Reaction Engineering
Liu, G., Strezov, V., Lucas, J. A. and Wibberley, L. J. 2004. Thermal Investigations of Direct Iron Ore Reduction with Coal. Thermochimica Acta, (410), 133-140.
Mackenzie, J. 1969. The Future Role of Directly Reduced Iron. Journal of Iron and Steel Institute. June, 765-772.
McKewan, W., M. 1958. Kinetics of Iron Ore reduction. Transactions of the Metallurgical Society of AIME. (212),
791-793.
Meyer, H., M. and Kaiser, M., H. 1928. Wilhelm Institue, Eisenforsh. (10), 107.
Morales, R.,G. and Prenzel, M. 2002. "Flexible and Reliable Direct Reduction Plants-The Key for Economic DRI/HBI Production", 32. ABM Ironmaking Congree Vitoria-Brazil.
Murayama, T., Ono, Y. and Kawai, Y. 1977. Stepwise Reduction of Hematite Pellets with CO-CO2 Mixtures.
Tetsu-Hogane. (63), 1099-1107.
Omori, Y. (as Editor). 1987. Blast Furnace Phenomena and Modelling. 121-135 s. Elsevier, London.
Schubert, K., H., Lüngen, H., B. und Steffen, R. 1996. Stand Der Entwicklung Zur Direkt Reduktion und Schmeltzreduktion Voneisenerz. Stahl und Eisen. 116 (8)
71-79.
Spitzer, R., H., Manning, F., S. and Philbrook, W., O. 1966 a. Generalized Model for the Gaseous Topochemical Reduction of Porous Hematite Spheres. Transactions of the Metallurgical Society of AIME. 236, 1715-1724.
Spitzer, R., H., Manning, F., S. and Philbrook, W., O. 1966 b. Mixed-control Reaction Kinetics in the Gaseous Reduction of Hematite. Transactions of the Metallurgical Society of AIME. (236), 726-741.
Steffen, R. und Lüngen, H., B. 1994. Stand Der Direkt Reduktion. Stahl und Eisen, 112 (6), 85-92.
Stephenson, R., L. and Smailer, R. M. 1980. Direct Reduced Iron. 21 s. The Iron and Steel Society of AIME,Warrandale.
Szekely, J. and Evans, J., W.1970. A Structural Model for Gas-solid Reactions with a Moving Boundary. Chem. Eng. Sci. 25, 1091-1107.
Trushenski, S., P., Li, K. and Philbrook, W., O. 1974. Non-topochemical Reduction of Iron Oxides. Metallurgical Transactions. 1149-1158.
Tsay, Q., T., Ray, w., H. and Szekely, J. 1976. The Modelling of Hematite Reduction with Hydrogen plus Carbonmonoxide Mixtures. AIChE Journal. (22), 1064¬1072.
Türkdoğan, E., T.
an
d Vinters, J., V. 1971 a. Gaseous
Pamukkale
Üniversitesi, Mühendislik Bilimleri Dergisi, Cilt 17, Sayı 3, 2011
131
N. Ort, S.
Yörük, M. Ş. Gülaboğlu
Reduction of Iron Oxides: Part 1. Reduction of Hematite in Hydrogen. Metallurgical Transactions. 2 (AUGUST),
3175-3188.
Türkdoğan,
E.
, T. and Vinters, J., V. 1971 b. Gaseous Reduction of Iron Oxides: Part 2. Por Characteristics of Iron Reduced from Hematite in Hydrogen. Metallurgical Transactions. 2 (NOVEMBER), 3189-3196.
Türkdoğan,
E.
, T. and Vinters, J., V. 1972. Gaseous Reduction of Iron Oxides: Part 3. Reduction-Oxidation of Porous and Dense Iron Oxides and Iron. Metallurgical Transactions. 3 (JUNE), 1561-1574.
Valipour, M., S. and Saboohi, Y. 2007. Modelling of Multiple Non-catalytic Gas-solid Reactions in a Moving Bed of Porous Pellets based on Finite Volume Method. Heat and Mass Transfer. (43), 881-894.
Washburn, E.W. 1921. The dynamics of capillary flow. Phys. (7), 115 - 116.
Yörük, S. ve Ort, N. 2007. "Direkt İndirgeme Prosesleri" 4. Demir-Çelik Kongresi, 1-3 Kasım 2007, Karabük. Yayın No: E/2007/443, 155.

Thank you for copying data from http://www.arastirmax.com