Buradasınız

AKHİSAR BÖLGESİ İÇİN ORTALAMA RÜZGAR HIZLARINA BAĞLI RÜZGAR ESME SÜRELERİNİN YAPAY SİNİR AĞLARI İLE TAHMİNİ

NEURAL PREDICTION OF WIND BLOWING DURATIONS BASED ON AVERAGE WIND SPEEDS FOR AKHISAR LOCATION

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2014.85047
Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Renewable energy resources are widely preferred over conventional resources as they are environmentally favorable. Wind energy is one of the important renewable energy resources and has been widely developed recently. The energy produced from wind is dependent upon several factors. One of them is average wind speed and the other is wind blowing period. In this study, the wind blowing period is estimated based on annual average wind speed, Hellman coefficient and tower height using artificial neural networks (ANN). The results of ANN are compared with a conventional method in which Rayleigh distribution is employed.
Abstract (Original Language): 
Günümüzde enerjinin temiz, yerli ve yenilenebilir olması sadece ülkemizde değil tüm dünya ülkelerinde çoğunlukla kabul görmektedir. Alternatif ve temiz olan bu enerji kaynaklarından biri ve en önemlisi de rüzgar enerjisidir. Atmosferi kirleten fosil yakıtlarla karşılaştırıldığında rüzgar enerjisini elektrik enerjisine dönüştüren sistemlerin hızlı bir şekilde geliştiği ve kullanıldığı görülmektedir. Rüzgar türbinlerinden elde edilen elektrik enerjisi birkaç faktöre bağlı olarak değişir. Bu faktörlerden ikisi ortalama rüzgar hızı ve rüzgar esme süreleridir. Bu çalışmada, Akhisar bölgesi için yıllık ortalama rüzgar hızı, Hellmann katsayısı, kule yüksekliği gibi parametrelere bağlı rüzgar esme süreleri Yapay Sinir Ağları (YSA) ile analiz edilmektedir. Rüzgar esme süreleri analizinde Rayleigh dağılımı'nın kullanıldığı gelenekselyöntem(GY) ile YSA'nın karşılaştırılması yapılmaktadır.
162
165

REFERENCES

References: 

[1] Monfared, M., Rastegar H., Kojabadi H. M., "A new strategy for wind speed forecasting using artificial intelligent methods", Renewable Energy, 34: 845-848, 2009.
[2] Yerebakan,
M.
, Rüzgar Enerjisi, İstanbul Ticaret Odası, Yayın No: 2001-33, 2001.
[3]
Karadeli
, S., Rüzgar Enerjisi, Temiz Enerji Vakfı, Kasım
2001.
[4] Wortman, A.J., Introduction to Wind Turbine Engineering,
Butterworths, Boston, 1983. [5] Kalogirou, S. A., "Applications of neural networks for
energy systems", Renewable Energy, 30 (7): 1075-1090,
2005.
[6] Kalogirou, S.A., "Artificial neural networks inrenewable energy systems applications: a review", Renewable and Sustainable Energy Reviews, 5 (4): 373-401, 2001.
[7] Sreelakshmi, K., Ramakanthkumar, P., "Neural Networks for Short Term Wind Speed Prediction", World Academy of Science, Engineering and Technology 18, 721-725, 2008.
[8] Kani, SAP, Ardehali, M.M., "Very short-term wind speed prediction: a new artificial neural network-Markov chain model" Energy Convers Manage, 52 (1): 738-45, 2011.
[9] Amjady, N., Keynia, F., Zareipour, H., "Short-term wind power forecasting using Ridgelet neural network" Electr PowerSystRes, 81 (12): 2099-107, 2011.
[10] Hui Liu, Chao Chen, Hong-qi Tian, Yan-fei Li., "A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks", Renewable Energy, Vol. 48, pp. 545-556, 2012.
[11] Guo, Z.H, Wu, J, Lu, H.Y, Wang, J.Z., "A case study on a hybrid wind speed forecasting method using BP neural network." Knowl Based Syst , 24 (7): 1048-56, 2011.
[12] Liu, H, Tian, H.Q, Chen, C, Li, Y.F., "A hybrid statistical method to predict wind speed and wind power". Renew
Energy 35 (8): 1857-6, 2010.
[13] Liu, H, Tian, HQ, Li, Y.F., "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction." Appl Energy, 98: 415-24, 2012.
[14] Li, G. and Shi, J., "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Vol. 87, pp. 2313-2320, 2010.
[15] Cadenas, E, Rivera, W., "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model." Renew Energy, 35 (12): 2732-38, 2010.
[16] Guo, Z.H., Zhao, W.G., Lu, H.Y., Wang, J.Z., "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model." Renew Energy, 37 (1):
241-9, 2012.
[17] Bhaskar, K., Singh, S.N., "AWNN-assisted wind power forecasting using feedforward neural network." IEEE Trans Sustain Energy, 3 (2): 306-15, 2012.
[18] Hui Liu, Hong-qi Tian, Di-fu Pan, Yan-fei Li., "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks", Applied Energy 107,
191-208, 2013.
[19] Öztopal, A., Kahya, C., Şahin, A.D., "Wind speed modelling
with artificial neural network", III. Ulusal Temiz Enerji
Sempozyumu, İstanbul,
Turkey, p. 415-422, 2000. [20] Öztopal, A., "Artificial neural network approach to spatial
estimation of wind velocity data", Energy Conversion and
Management, 47 (4) : 395-406, 2006. [21] Yurdusev, M.A., Ata, R., Çetin, N.S., "Assessment of
Optimum Tip Speed Ratio inWind Turbines Using Artificial
Neural Network" Energy 31: 1817-1825, 2006. [22] Lippman, R.P., "An Introduction to Computingwith Neural
Nets", IEEE ASSP Magazine, April, 4-22, 1987. [23] Akpınar, E.K ve Akpınar, S., "Determination of the Wind
Energy Potential for Maden, Turkey", Energy Convers
Manage, 45 (18-19), 2901-14, 2004. [24] Weisser, D. A., "Wind Energy Analysis of Grenada: an
Estimation Using the Weibull' Density Function",
Renewable Energy, 28, 1803-1812, 2003. [25] Deaves, D.M. and Lines, I.G., "On the Fitting of Low Mean
Wind Speed Data to the Weibull Distribution", J. Wind Eng.
Ind. Aerodyn, 66, 169-78, 1997. [26] Haralambopoulos, D.A., "Analysis of Wind Charactersistics
and Potential in the East Mediterranean-the Lesvos Case",
Renewable Energy, 6, 445-54, 1995. [27] Çelik, A.N., "A Statistical Analysis of Wind Power Density
Based on the Weibull and Rayleigh Models at Southern
Region of Turkey", Renewable Energy, 29, 593-604, 2004. [28] Ülgen, K. ve Hepbaşlı, A., "Determination of Weibull
parameters for wind energy analysis of İzmir, Turkey", Int
J Energy Res., 26, 495-506, 2002. [29] Mathew, S., Pandey, K.P., Anil Kumar, V., "Analysis of wind
regimes for energy estimation", Renewable Energy, 25:
381-399, 2002.
[30] http://www.eie.gov.tr/turkce/YEK/ruzgar/ruzgar_index.
html.

Thank you for copying data from http://www.arastirmax.com