Buradasınız

İKİ BOYUTLU PROBLEMLER İÇİN SONLU ELEMANLAR AĞI OLUŞTURULMASI

A METHOD FOR FINITE ELEMENT MESH GENERATION FOR 2-D PROBLEMS

Journal Name:

Publication Year:

Abstract (2. Language): 
The first step in numerical analysis techniques is the preparation of a suitable mesh for solution domain. In the finite element method, the mesh generation, as a preprosessing stage, affects the accuracy of the results importantly. Furthermore, it is very time consuming when it is not carried out automatically. In this study, an automatic mesh generation technique which can be used for plane and axisymmetric problems is introduced. Meshes prepared with this technique for several geometries are given. With the computer program developed for this study, the desired domains can be divided into 3 node triangular and 4, 8 and 9 node quadrilateral elements with least input information and suitably fine meshes.
Abstract (Original Language): 
Nümerik analiz yöntemlerinin birinci adımı genellikle çözüm bölgesinin elemanlara ayrılarak bir ağ yapısının elde edilmesidir. Sonlu elemanlar metodunda da ön işlemlerden olarak sonlu eleman ağının elde edilmesi sonuçların güvenilirliği açısından büyük öneme sahiptir ve otomatik olarak yapılmazsa çok zaman alıcı bir aşamadır. Bu çalışmada, düzlem ve eksenel simetrik problemlerin çözümünde kullanılabilecek bir otomatik ağ oluşturma yöntemi tanıtılarak ele alınan çeşitli geometrilerin sonlu eleman ağları verilmiştir. Hazırlanan bilgisayar programı istenen bölgeyi istenen sıklıkta ve en az girdi bilgisiyle 3 düğümlü üçgen ve 4, 8 ve 9 düğümlü dörtgen elemanlara ayırmaktadır.
315
322

REFERENCES

References: 

Ait-Sadi, R., Emson, C. R. L. 1994. Three step refinement process for automatic 2-D mesh
adaption
. IEE Conference Publication (384). Publ by IEE, Michael Faraday House, Stevenage, Engl. 215-218
Bathe, K. J., 1982, Finite Element Procedures in Engineering Analysis, Prentice Hall, Inc. 727p, USA
Bern, M., Eppstein, D., Gilbert, J. 1991. Provably Good Mesh Generation. IEEE Transactions on Industry Applications, 27 (1), 231-241.
Berry, K. J. 1989. Parametric 3D finite-element Mesh Generation. Comp. and Struc. 33 (4), 969¬976.
Boender, E., Bronsvoort, W. F., Post, F. H. 1994.
Finite-Element Mesh Generation From Constructive-Solid-Geometry Models. Computer
Aided Design 26 (5), 379-392
Botkin, M. E. 1992. Three-dimensional shape optimization using fully automatic mesh generation. AIAA J. 30 (7) 1932-1934
Buys, J., Botha, J. F., Messerschmidt, H. J. 1992.
"Triangular Finite Element Meshes and Their Application in Ground-water Research" Computational Methods in Subsurface Hydrology Proc 8 Int Conf Comput Method Water Resour. Publ by Springer-Verlag Berlin, Dept ZSW, Berlin 33, GER. 115-121.
Chantrupatla, T. R., Belegundu, A. D. 1991.
Introduction to Finite Element in Engineering. Prentice Hall Inc., 416 p, USA.
Chew, L. P. 1993. "Guaranteed-quality Mesh Generation for Curved Surfaces" Proceedings of the 9th Annual Symposium on Computational Geometry Proc. 9th Annu. Symp. Comput. Geom. Publ by ACM, New York, NY, USA. p
274-280.
Golias, N. A., Tsiboukis, T. D. 1992. Three-Dimensional Automatic Adaptive Mesh Generation. IEEE Transactions on Magnetics 28 (2), 1700-1703.
Grabinsky, M. W. F., Curran, J. H. 1993. Efficient
Mesh Generation Procedures for Finite Element Analysis of Underground Structures. Int. J. of Rock Mechanics and Mining Sciences and Geomechanics
Abstracts 30 (6), 591-600.
Guersoy, H. N., Patrikalakis, N. M. 1991. Automated Interrogation and Adaptive Subdivision of Shape Using Medial Axis Transform. Advances in Eng. Software and Workstations 13 (5-6), 287¬302.
Huebner, K. H., Thornton, E. A., 1982, The Finite Element Method for Engineers, John Wiley and Sons) 623 p, USA.
Jin, H., Wiberg, N. E. 1990. Two-dimensional Mesh Generation, Adaptive Remeshing and Refinement. Int. J. Numerical Methods in Eng.
29 (7), 1501-1526.
Keanini, R. G., Desai, N. N. 1996. Inverse Finite Element Reduced Mesh Method for Predicting Multi-dimensional Phase Change Boundaries and Nonlinear Solid Phase Heat Transfer, Int. J. Heat
and Mass Transfer 39 (5), 1039-1049.
Kim, H. G., Grosse, Ian R., Nair, S. V. 1993. Error Estimation and Mesh Optimization for Finite Element Analysis of Short Fiber Reinforced Composite Materials. Computers in Eng., Proceedings of the Int. Computers in Eng. Conference and Exhibit 2. Publ by ASME, New
York, NY, USA. 123-130.
Kramer, K. M., Hitchon, W. N. G. 1996. Strategies for Mesh-handling and Model Specification Within a Highly Flexible Simulation Framework. Computer Physics Communications 93 (2-3), 179-211.
Lee, R., Cangellaris, A. C. 1992. A Study of Discretization Error in the Finite Element Approximation of Wave Solutions. IEEE Transactions on Antennas and Propagation
40 (5), 542-549.
Liu, Y., Chen, K. 1989. More Findings in Using the Program a Versatile Two-dimensional Mesh Generator with Automatic Bandwidth Reduction. Comp. and Struc. 32 (1), 145-147.
Mühendislik Bilimleri Dergisi 1997 3 (2) 315-322
321
Journal of Engineering Sciences 1997 3 (2) 315-322
İki Boyutlu Problemler İçin Sonlu Elemanlar Ağı Oluşturulması, M. Topçu, S. Taşgetiren
Lo, S. H.
1992
. Generation of High-quality Gradation Finite Element Mesh. Eng. Fracture
Mechanics 41 (2), 191-202.
Min, W., Tang, Z., Zhang, Z., Zhou, Y., Wang, M. 1995. New Approach to Fully Automatic Mesh Generation. J. Computer Science and Technology 10 (6), 491-508.
Moor,
E
. H., Schauer, D. A., Weiss, J. A. 1995. "Mesh Generation for a Finite Element Model of the Human leg" ASME, Bioengineering Division,
BED (29) New York, NY, USA. 51-52
O' Bara, R. M., Ateshian, G. A.
1995
. Geometric "Model Construction and Mesh Generation for Soft Tissues in Joints" ASME, Bioengineering.
Division, BED (29) New York, NY, USA. 215¬216.
Reddy,
V
. A. K., Kumar, R., Sharma, S. P. 1989. Mesh Generation and Graphic Check for 3D Building Frames. Comp. and Struc. 32 (2), 445¬452.
Reichert, K., Skoczylas, J., Tarnhuvud, T. 1991. Automatic Mesh Generation Based on Expert-System-methods. IEEE Transactions on Magnetics
27 (5), 4197-4200.
Souza, L. T., Gattass, M. 1993. New scheme for Mesh Generation and Mesh Refinement Using
Graph Theory. Comp. and Struc. 46 (6), 1073-1084
Tanabe, M. 1992. Simple and Efficient Algorithm of Automatic Mesh Generation for a General Plate and Frame Structure With Holes. Computational
Mechanics 9 (3), 185-194.
Tembulkar, J. M., Hanks, B. W. 1992. On
Generating Quadrilateral Elements from a Triangular Mesh. Computers and Structures
42 (4), 665-667.
Thornton, E. A., Vemaganti, G. R. 1990. Adaptive Remeshing Method for Finite-element Thermal Analysis. J. Thermophysics and Heat Transfer 4 (2), 212-220.
Zhou, J. M., Shao, K. R., Zhou, K. D., Li, L. R.
1993. New Approach to Automatic Quadrilateral Mesh Generation. IEEE Transactions on Magnetics
29 (2), 1910-1913.
Zhu, J. Z., Zienkiewicz, O. C., Hinton, E., Wu, J. 1991. New Approach to the Development of Automatic Quadrilateral Mesh Generation. Int. J. Numerical Methods in Engineering 32 (4), 849-866.
Zienkiewicz, O. C. 1991. Adaptivity and Mesh Generation. Int. J. Numerical Methods in Engineering 32 (4), 783-810 .
Zienkiewicz, O. C., Philips, D. V. 1971.
An Automatic Mesh Generation Scheme for Plane and Curved Surfaces by Isoparametric Coordinates. Int. J. Numerical Methods in Engineering
(3), 519-528.

Thank you for copying data from http://www.arastirmax.com