Buradasınız

OPTİMAL KONTROL İLE YÖRÜNGE TAHMİNLERİNDE KİNETİK ÖLÇÜTLERİN ÖNEMİ

IMPORTANCE OF KINETIC MEASURES IN TRAJECTORY PREDICTION WITH OPTIMAL CONTROL

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
A two-dimensional sagittally symmetric human-body model was established to simulate an optimal trajectory for manual material handling tasks. Nonlinear control techniques and genetic algorithms were utilized in the optimizations to explore optimal lifting patterns. The simulation results were then compared with the experimental data. Since the kinetic measures such as joint reactions and moments are vital parameters in injury determination, the importance of comparing kinetic measures rather than kinematical ones was emphasized.
Abstract (Original Language): 
Elle materyallerin taşınımı/kaldırımı için gerekli optimal yörüngelerin similasyonu amacıyla, insan vücudu iki boyutta ve sajital düzleme göre simetrik olarak modellendi. Nonlineer kontrol teknikleri ve genetik algoritmalar, optimal kaldırma yollarını araştırmak üzere optimizasyonlarda kullanıldı. Daha sonra similasyon sonuçları, deneysel verilerle karşılaştırıldı. Kinematik ölçütlerden ziyade, yaralanmaların önceden tahmininde çok önemli olan mafsal kuvvetleri ve mafsallardaki momentler gibi kinetik öçütlerin karşılaştırılmasının gereği vurgulandı.
151
155

REFERENCES

References: 

Anderson, K. S., and Gundogdu, O. 2000. "Need for Kinetic Measures in Predicting Musculoskeletal Response with Optimal Control", NSF/NIOSH Workshop on "Next Generation Human-Assist Devices and Automation", September 14, 2000, Baltimore, MD.
Chapra, S. C. and Canale, R. P. 1998. Numerical Methods for Engineers, McGraw-Hill, New York.
Chow, C. K. and Jacobson, D. H. 1971. Studies of Human Locomotion Via Optimal Programming, Mathematical Biosciences, 10, 239-306.
Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, Reading, Massachusetts.
Gruver, W. A. and Sachs, E. 1980. Algorithmic
Methods in Optimal Control, Pitman Advanced Publishing Program, Boston.
Gündoğdu, Ö.
2000
. Quantification and Assessment of Objective Function Performance in Manual Materials Handling, PhD Dissertation, Rensselaer Polytechnic Institute, Troy, New York.
Hsiang, M. S. 1992. Simulation of Manual Materials Handling, PhD Dissertation, Texas Tech University.
Hsiang, S. H. and Ayoub, M. M. 1994. Development of Methodology in Biomechanical Simulation of Manual lifting, Int. J. Industrial Ergonomics, (13), 271-288.
Khalaf, K., A., Wade, L., Parnianpour, M., and Simon, S. R. 1996. "Biomechanical Simulation of Manual Multi-Link Coordinated Lifting", Fifteenth Southern Biomechanical Eng. Conference, Dayton,
Ohio, 197-198.
Khalaf, K. A. 1998. Development of Experimental and Analytical Models for Biomechanical Simulation and Ergonomic Assessment of Manual Material Handling Tasks, Ph.D. Dissertaion, The Ohio State University, Colombus, Ohio.
Kirk, D. E. 1970. Optimal Control Theory, Prentice Hall, New Jersey.
Ma, B. 1994. An Improved Algorithm for Solving Constrained Optimal Control Problems, Ph.D. Dissertation, University of Maryland.
Nagurka, M. L., and Yen, V. 1990. Fourier-Based Optimal Control of Nonlinear Dynamic Systems, J. Dynamic Systems, Measurement, and Control, 112, 17-26.
Pandy, M. G., Anderson, F. C., and Hull, D. G.
1992. A Parameter Optimization Approach for Optimal Control of Large-scale Musculoskeletal Systems, Trans. ASME J. Biomechanical Eng., 114,
450-460.
Pandy, M. G., Garner, B. A., and Anderson, F. C. 1995. Optimal Control of Non-Ballistic Muscular Movements: A Constraint-Based Performance Criterion for Rising From a Chair, Trans. ASME J. Biomechanical Eng., 117, 15-26.
Winter, D. A. 1990. Biomechanics and Motor Control of Human Movement, John-Wiley & Sons, Inc., New York.

Thank you for copying data from http://www.arastirmax.com