Buradasınız

TIBBİ UYGULAMALAR İÇİN BORU ŞEKLİNDEKİ SAÇ ÖRGÜLERİNİN ELASTİK DEFORMASYONUNUN İNCELENMESİ

ANALYSIS OF ELASTIC DEFORMATION OF BRAIDED TUBULAR STRUCTURES FOR MEDICAL APPLICATIONS

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study, self-expanding stents were fabricated and analyzed. These stents are in the form of 3-D tubular braided structures made of polymeric materials. This type of structures is used in medicine to open clogged artheries and veins by exerting radial force. The amount of radial force exerted into the membrane should not give any damage to the veins. Therefore, the geometry of the three dimensional tubular braided fabric is analyzed to give an optimum radial force for medical applications.
Abstract (Original Language): 
Bu çalışmada kendinden uzamalı katedırlar üretilip analiz edilmiştir. Katedırlar üç boyutlu saç örgüsü yapısında olup, polimer yada metal malzemeden imal edilirler. Bu tip yapılar tıbbi alanda tıkanmış olan atardamarların açılmasında merkezden dışa dogru bir kuvvet uygulanması prensibine göre kullanılır. Katedır tarafından damar çeperlerine uygulanan kuvvetin damarlara bir zarar vermeyecek miktarda olması zaruridir. Bundan dolayı, bu tür üç boyutlu hortumsal saç örgülerin yapısı tıbbi uygulamalar için optimum radial kuvvet elde edilebilmesi için incelenmiştir.
277
285

REFERENCES

References: 

Anonymous, 1993. American Society for Testing
and Materials (ASTM). Standard Test Methods for Tension and Elongation of Elastic Fabrics (Constant Rate-of-Extension Type Tensile Testing Machine), ASTM Designation D4964 in ASTM Book of Standards, Section 7, Vol. 07.02, Philadelphia, Pennsylvania, ASTM.
Dieter, G. E. 1976. Mechanical Metallurgy, 2nd Edition Tokyo: McGraw-Hill.
Du, G. W. and Popper, P. 1990. Process Model of
Circular Braiding, Processing of Polymers and Polymeric Composites, ASME, 19, 119-125.
Gere, J. M. and Timoshenko, S. 1984. Mechanics of Materials, 2nd Edition, PWS Engineering, Boston, Massachusetts.
Goff, J. M. 1976. The Geometry of Tubular Braided Structures, Master Thesis, Georgia Institute of Technology, Atlanta, Georgia.
Jedwab, M. R., and Clerc, C. O. 1992. A Study of the Geometrical and Mechanical Properties of a Self-Expanding Metallic Stent-Theory and Experiment, Journal of Applied Biomaterials,
(4), 77-85.
Ko, F. K., Pastore, C. M., and Head, A. A. 1976. Handbook of Industrial Braiding, Atkins & Pearce.
Montgomery, D. C. 1991. Design and Analysis of Experiments, 3rd Edition, John Wiley & Sons, New York, New York.
Paris, E., King, M. W., Guidoin, R. G., Delermo, J., Deng, X., and Douville, Y. 1994. Innovations and Deviations in Therapeutic Vascular Devices, Polymeric Biomaterials, Marcel Dekker, Inc, New York, New York, 245-275.
Schmitt, P. J. 1992. A Radially Self-Expanding Implantable Intraluminal Device, US Patent No:
PCT/US93/08649.
Wahl, A. M. 1963. Mechanical Spring, 2nd Edition New York, New York.

Thank you for copying data from http://www.arastirmax.com