Buradasınız

EKSENEL SİMETRİK ÇATLAK İÇEREN SONSUZ SİLİNDİRİN GERİLME ŞİDDETİ FAKTÖRÜNÜN HESAPLANMASI

COMPUTATION OF STRESS INTENSITY FACTORS OF AN AXISYMMETRIC INFINITE CYLINDER HAVING A TRANSVERSE CRACK

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
This paper considers the problem of an axisymmetric infinite cylinder with a crack at z = 0. The cylinder is under the action of uniformly distributed axial tension applied at infinity and its lateral surface is free of traction. It is assumed that the material of the cylinder is linearly elastic and isotropic. Crack surfaces are free. Formulation of the boundary problem under consideration is reduced to single singular integral equation in terms of the derivative of the crack surface displacement. These equations together with the single-valuedness and equilibrium condition for the displacements around the crack is converted to a system of a linear algebraic equation which is solved numerically. Stress intensity factors are calculated and presented in graphical form.
Abstract (Original Language): 
Bu çalışmada çekmeye maruz z = 0 düzleminde çatlak içeren sonsuz eksenel simetrik silindir incelenmektedir. Silindir düzgün yayılı p0 şiddetinde eksenel çekmeye maruzdur. Silindirin yanal yüzeylerinde gerilmeler sıfırdır. Malzemenin lineer elastik ve izotropik olduğu varsayılmaktadır. Çatlak yüzeyleri serbesttir. Problem çatlak yüzey deplasman türevi cinsinden tek tekil integral denkleme indirgenmektedir. Boyutsuzlaştırılan denklem takımı single-valuedness ve denge durum denklemi ilave edilerek lineer denklem takımlarına indirgenerek sayısal çözümü yapılmıştır. Gerilme şiddeti faktörü hesaplanmış ve sonuçlar grafiklerle sunulmuştur.
1
8

REFERENCES

References: 

Erdelyi, A. 1953. Ed.Tables of Integral Transforms. Vol.1, McGraw-Hill Company, New York.
Erdoğan,
F
. and Gupta, G. D. 1973. Numerical Solutions of Singular Integral Equations in Methods of And Solution of Crack Problems, ed. G.C. Sih Leydon Noordhoff, 368.
Erdogan, F. and Gupta, G. D. 1972. On The Numerical Solution of Singular Integral Equations, Quarterly of Applied Mathematics 30, January.
Geçit,
M
. R. 1986. The Axisymmetric Contact Problem for a Semi-Infinite Cylinder and a Half Space. International Journal Engineering Science. Vol. 24. No.8. 1245-1256.
Geçit,
M
. R. 1988. Semi-Infinite Elastic Strip Containing a Transverse Crack, The Arabian Journal for Science and Engineering, Volume 13, Number 1, January 1988.
Gupta, G. D. 1973. An Integral Equation Approach To The Semi-Infinite Strip Problem. Journal of Applied Mechanics, 40, Transactions of ASME, 95.
Muskhelishvili, N. I. 1953. Singular Integral Equations. P.Noordhoff, Gröningen, Holland.
Nied, H. F. and Erdoğan, F. 1983. The Elasticity Problem For A Thick Walled Cylinder Containing a Circumferential Crack. International Journal of
Fracture 22, 277-301.
Sneddon, I. N. 1951. Fourier Transforms, McGraw-Hill Company, New York.

Thank you for copying data from http://www.arastirmax.com