Buradasınız

İZOPROPANOL-METİL İZOBUTİL KETON SİSTEMİNİN (101.32, 66.67 VE 40.00 ± 0.02) KPa BASINÇLARDAKİ İZOBARİK SIVI-BUHAR DENGE VERİLERİ

ISOBARIC VAPOUR-LIQUID EQUILIBRIUM DATA OF THE SYSTEM ISOPROPANOL-METHYL ISOBUTYL KETONE AT (101.32, 66.67, AND 40.00 ± 0.02) KPa

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Isobaric vapour-liquid equilibrium (VLE) data for the isopropanol - methyl isobutyl ketone system has been measured experimentally at (101.32, 66.67, and 40.00 ± 0.02) kPa. Consistency of the experimental results has been checked by Redlich-Kister, Broughton-Brearley, Black and Herington test methods. The equilibrium data was compared with UNIFAC and Margules models, two classical methods which have different calculation mechanism and which are methods widely used in this field. The results were illustrated as diagrams and tables, and the experimental data were contrasted with the calculated by evaluating the deviations. It was seen that the models exhibited an ineligibility with the experimental data, especially at low pressures, probably because of the insufficient pressure sensivity of the used model equations.
Abstract (Original Language): 
Izopropanol - metilsiklohekzan sistemine ait izobarik sıvı-buhar denge verileri (101.32, 66.67 ve 40.00 ± 0.02) kPa basınçlarda deneysel olarak elde edilmiştir. Deneysel verilerin tutarlılığı Redlich-Kister, Broughton-Brearley, Black and Herington test yöntemleriyle sınanmıştır. Denge verileri, bu alanda sıkça kullanılan ve farklı hesaplama yollarına sahip iki klasik metod olan UNIFAC ve Margules yöntemlerinden elde edilen verilerle karşılaştırılmıştır. Sonuçlar tablolar ve grafikler halinde sunulmuş, sapmalar değerlendirilmek suretiyle deneysel ve hesaplama sonuçları arasındaki farklar vurgulanmıştır. Muhtemelen model denklemlerin yetersiz basınç hassasiyeti dolayısıyla, elde edilen verilerin özellikle düşük basınçlarda, deneysel verilerden sapma gösterdiği görülmüştür.
103
108

REFERENCES

References: 

Eckert, C. A., Newman, B. A., Nicolaides, G. L. Long, T. C. 1981 Measurement and Application of Limiting Activity Coefficients, AIChE Journal,
27, p. 33-40.
Fresdenslund, Aa., Gmehling, J., Rasmussen, P. 1977a. Vapor-Liquid Equilibria Using UNIFAC, Elsevier, Amsterdam.
Fredenslund, A., Gmehling, J., Michelsen, M., Rasmussen, P., Prausnitz, J. M. 1977b. Computerized Design of Multicomponent Distillation Columns Using the UNIFAC Group Contribution Method for Calculation of Activity Coefficients, Ind. Eng. Chem., Process Des. Dev.,
(16), 450-462.
Fu, Y., Sandler, S. I., Orbey, H. 1995. A Modified UNIQUAC Model That Includes Hydrogen Bonding, Ind. Eng. Chem. Res. Vol. 34, No. 12, p.
4351-4363.
Gmehling, J., Li, J., Schiller, M. 1993. A Modified
UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties, Ind. Eng. Chem. Res., 32 (1), 178-193.
Herington, E. F. G. 1951. Test for the Consistency of Experimental Isobaric Vapor-Liquid Equilibrium
Data, J. Inst. Pet., 37, p. 457-470.
Kyle, B. G. 1992, Chemical and Process Thermodynamics, Second Edition, Prentice Hall Inc., USA.
Larsen, B. L., Rasmussen, P., Fredenslund, Aa.,
1987. A Modified UNIFAC Group Contribution
Method for Prediction of Phase Equilibria and Heat of Mixing, Ind. Eng. Chem. Res., (26), 2274-2286.
Redlich, O., Kister, A. T. 1948. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem.,
(40), 345-348.
Reid, R. C., Prausnitz, J.M., Poling, B. E. 1987. The Properties of Gases and Liquids, 4th ed., McGraw-Hill Book Company, New York.
Smith, J. M., Van Ness, H. C. 1988. Introduction to Chemical Engineering Thermodynamics, Fourth Edition, McGraw-Hill Book Company, Singapore.
Van Winkle, M. 1967. Distillation, McGraw-Hill Book Company, United States of America.

Thank you for copying data from http://www.arastirmax.com