Buradasınız

KANATLI BİR BORU ETRAFINDAKİ FAZ DEĞİŞİMİ

PHASE CHANGE AROUND A FINNED TUBE

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
This study presents the heat transfer enhancement in the thermal energy storage system by using radially finned tube. The solution of the system consists of the solving the equations of the heat transfer fluid (HTF), the pipe wall and fin, and the phase change material (PCM) as one domain. The control volume finite difference approach and the semi implicit solver (SIS) are used to solve the equations. Fully developed velocity distribution is taken in the HTF. Flow parameters (Re number and inlet temperature of coolant) and fin parameters (the number of fins, fin length, fin thickness) are found to influence solidification fronts and the total stored energy
Abstract (Original Language): 
Bu çalışmada, bir ısıl enerji depolama sisteminde radyal kanatlı boru kullanılmasıyla ısı transferinde yaratılan artış incelenmiştir. Sistemin çözümü, ısı transfer akışkanı (ITA), boru duvarı ve kanat ve faz değişim malzemesi (FDM) için yazılan denklemlerin bir bütün olarak çözümünü içerir. Bu denklemlerin çözümü için kontrol hacmi sonlu fark yaklaşımı ile yarı kapalı çözücü (SIS) kullanılmıştır. Isı transfer akışkanı içinde tam gelişmiş hız dağılımı alınmıştır. Akış parametreleri (Re sayısı ve soğutkanın giriş sıcaklığı) ve kanat parametrelerinin (kanat sayısı, kanat uzunluğu ve kanat kalınlığı) katılaşma eğrisi ve toplam depolanan enerjiye etkisi bulunmuştur.
15
21

REFERENCES

References: 

Abhat, A.1978. Performance Studies of a Finned Heat Pipe Latent Thermal Energy Storage System. International Solar Energy Congress, New Delhi, Indian
Abhat, A.1980. Application of Heat Pipes to Thermal energy storage systems. AIAA 15th Thermophysics Conference, July 14-16, Snowmass, Colorado, USA
Bathelt, A. G. and Viskanta, R. 1981. Heat Transfer and Interface Motion During Melting and Solidification Around a Finned Horizontal Sink/Source. J. Heat Transfer, (103), 720-726.
Bellecci, C. and Conti, M. 1993. Phase Change
Thermal Storage: Transient Behaviour Analysis of a Solar Receiver/Storage Module Using the Enthalpy Method. Int. J. Heat Mass Transfer, (36), 2157-2163.
Cao, Y., Faghri, A. 1990. A Numerical Analysis of Phase-Change Problem Including Natural Convection, ASME J. Heat Transfer, 112 (3), 812¬816.
Cao, Y. and Faghri, A. 1991a. A PCM/Forced
Convection Conjugate Transient Analysis of Energy Storage Systems With Annular and Countercurrent Flows. ASME J. Heat Transfer, (113), 37-42.
Cao, Y. and Faghri, A. 1991b. Performance Characteristics of a Thermal Energy Storage Module: a Transient PCM/Forced Convection Conjugate Analysis. Int. J. Heat Mass Transfer, 34, 93-101.
Cao, Y. and Faghri, A. 1992 . A study of Thermal
Energy Storage System With Conjugate Turbulent Forced Convection. ASME J. Heat Transfer, 114, 1019-1027.
Erek, A. 1999. Phase Change Around a Radially Finned Horizontal Cylinder: A Conjugate Problem, Ph. D. Thesis, University of Dokuz Eylül University, İzmir.
Govier, G. W. and Aziz, K. 1972 . The Flow of
Complex Mixtures in Pipes, Robert E. Krieger Publishing Company, Malabar, Florida.
Henze, R. H. & Humphrey, J. A. C. 1981 . Enhanced Heat Conduction in Phase-Change Thermal Energy Storage Devices, Int. J. Heat Mass Transfer, 24, 459-474.
Ho, C. F. and Viskanta, R. 1984 . Inward Solid-
Liquid Phase Change Heat Ttransfer in a Rectangular Cavity With Conducting Vertical Walls, Int. J. Heat Mass Transfer, 27, 1055-1065.
Humphries, W. R. and Griggs, E. I. 1977. A design handbook of Phase Change Thermal Control and Energy Ctorage Devices. Technical Paper 1074, NASA, Washington, DC.
Ismail, K. A. R: and Alves, C. L. F. 1986. Analysis of the Shell-and-tube PCM Storage System. Proceedings of the 8th International Heat Transfer Conference, 1781-1786.
Kalhori, B. and Ramadyani, S. 1985. Studies on Heat Transfer From a Vertical Cylinder, With or Without Fins, Embedded in a Solid Phase Change Medium, J. Heat Transfer, 107, 44-51.
Lee , S. L. 1989. A Strongly Implicit Solver For Two-Dimensional Elliptic Differential Equations. Numerical Heat Transfer (B), 16, 161-178.
Lacroix, M. 1993a . Numerical Simulation of Melting and Resolidification of a Phase Change Material Around Two Cylindrical Heat Exchangers. Numerical Heat Transfer (A), 24, 143-160.
Lacroix, M. 1993b . Study of the Heat Transfer Behaviour of a Latent Heat Thermal Energy Storage Unit With a Finned Tube. Int. J. Heat Mass Transfer, 36, 2083-2092.
Mühendislik Bilimleri Dergisi 2003 9 (1) 15-21
20
Journal of Engineering Sciences 2003 9 (1) 15-21
Phase Change Around A Finned Tube, A. Erek
Padmanabhan, P. V. and M. V. Khrishna, M. V. 1989.
Outward Phase Change in a Cylindrical Annulus With Axial Fins on the Inner Tube, Int. J. Heat Mass Transfer, 29, 1855-1868.
Patankar, S. V. 1980. Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.
Sasaguchi, K. and Sakamoto, Y. 1989 . Effects of Natural Convection on Melting of a Phase Change Material Around a Finned Tube. Trans. JSME, 55 (513),1418-1425.
Sasaguchi, K., Yoshida, H., Nakashima, S. 1988. Heat Transfer Characteristics of a Latent Heat Thermal
Energy Storage Unit With a Finned Tube (Effects of Fin Configuration). Trans.J SME, 54 (504), 2136¬2143.
Sparrow, E. M., Larson, E. D. and Ramsey, J. M. 1981. Freezing on a Finned Tube For Either Conduction-Controlled or Natural Convection-Controlled Heat Transfer. Int. J. Heat Mass Transfer, 24, 273-284.
Zhang, Y. and Faghri, A. 1996. Analytical Solution of Thermal Energy Storage System With Conjugate Laminar Forced Convection. Int. J. Heat Mass Transfer, 39, 717-724.

Thank you for copying data from http://www.arastirmax.com