Buradasınız

İYONİK KANAL AKTİVASYON VE İNAKTİVASYON KAPILARININ DİNAMİK DAVRANIŞI İÇİN ALTERNATİF DENKLEMLER

ALTERNATIVE EQUATIONS FOR DYNAMIC BEHAVIOR OF IONIC CHANNEL ACTIVATION AND INACTIVATION GATES

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this paper, alternative equations for dynamics of ionic channel activation and inactivation gates are proposed based on the path probability method. Dynamic behavior of a voltage-gated ionic channel is modeled by the conventional Hodgkin-Huxley (H-H) mathematical formalism. In that model, conductance of the channel is defined in terms of activation and inactivation gates. Dynamics of the activation and inactivation gates is modeled by first-order differential equations dependent on the gate variable and the membrane potential. In the new approach proposed in this study, dynamic behavior of activation and inactivation gates is modeled by a first-order differential equation dependent on internal energy and membrane potential by using the path probability method which is widely used in statistical physics. The new model doesn't require the time constant and steady-state values which are used explicitly in the H-H model. The numerical results show validity of the proposed method.
Abstract (Original Language): 
Bu makalede, iyonik kanal aktivasyon ve inaktivasyon kapılarının dinamik davranışı için yol ihtimaliyet yöntemine dayalı olarak elde edilen alternatif denklemler sunulmaktadır. Gerilim-kapılı iyonik kanalın dinamik davranışı, geleneksel Hodgkin-Huxley (H-H) matematiksel biçimciliği ile modellenmektedir. Bu modelde kanal iletkenliği, aktivasyon ve inaktivasyon kapılarına göre tanımlanmaktadır. Aktivasyon ve inaktivasyon kapılarının dinamiği, kapı değişkenine ve membran potansiyeline bağlı birinci dereceden diferansiyel denklemlerle modellenmektedir. Bu çalışmada sunulan yeni yaklaşımda, aktivasyon ve inaktivasyon kapısının dinamik davranışı, istatistik fizikte yaygın olarak kullanılan yol ihtimaliyet yöntemi kullanılarak iç enerji ve membran potansiyeline bağlı birinci dereceden diferansiyel denklemlerle modellenmektedir. Yeni model, H-H modelinde açıkça kullanılan zaman sabiti ve sürekli-hal değerlerini de gerektirmemektedir. Sayısal sonuçlar önerilen yöntemin geçerliliğini göstermektedir.
349
356

REFERENCES

References: 

Aidley, D.
J.
, Stanfield, P. R. 1996. Ion Channels, Cambridge University Press.
Aihara, K., Matsumoto, G. 1982. Temporally Coherent Organization and Instabilities in Squid
Axons, J. Theor. Biol. 95, 697-720.
Aihara, K., Matsumoto, G. 1983. Two Stable Steady States in the Hodgkin-Huxley axons, J. Biophysiol.
41, 87-89.
Brown, A. M. 2000. Simulation of Axonal Excitability Using a Spreadsheet Template Created in Microsoft Excel, Comput. Methods and Programs in Biomedicine 63, 47-54.
Clay, J. R. 1998. Excitability of the Squid Giant Axon revisited, J. Neurophysiol. 80, 903-913.
De Schutter, E. 1986. Alternative Equations for the Molluscan ion Currents Described by Connor and Stevens, Brain Research 382, 134-138.
De
Schutter
, E., Bower J. M. 1994. An Active Membrane Model of the Purkinje Cell: I. Simulation of Current Clamps in Slice, J. Neurophysiology 71,
375-400.
Destexhe, A., Huguenard, J. 2001. "Which Formalism to use for Modeling Voltage-Dependent Conductances," in: De Schutter, E. (Eds), Computational Neuroscience:Realistic Modeling for Experimentalists, CRC Press, New York.
Doi, S., Kumagai, S. 2001. "Nonlinear Dynamics of Small-scale Neural Biophysical Networks", in Biophysical Neural Networks, Mary Ann Liebert, Inc..
Guckenheimer, J., Labouriau, I. S. 1993. Bifurcation of the Hodgkin and Huxley Equations: A New Twist, Bulletin of Mathematical Biology 55 (5),
937-952.
Hodgkin, A. L., Huxley, A. F. 1952. A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve, J. Physiol.(London) 117, 500-544.
Holden,
A
. V., Yoda, M. 1981a. Ionic Channel Density of Excitable Membranes Can act as a Bifurcation Parameter, Biol. Cybern. 42, 29-38.
Holden,
A
. V., Yoda, M. 1981b. The Effects of Ionic Channel Density on Neuronal Function, J. Theoret. Neurobiol. 1, 60-81.
Kaplan, D. T., Clay, J. R., Manning, T., Glass, L.,
Guevara, M. R., Shrier, A. 1996. Subthreshold Dynamics in Periodically Stimulated Squid Giant
Axons, Phys. Rev. Lett. 76 (21), 4074-4077.
Mühendislik Bilimleri Dergisi 2003 9 (3) 349-356
355
Journal of Engineering Sciences 2003 9 (3) 349-356
İyonik Kanal Aktivasyon ve İnaktivasyon Kapılarının Dinamik Davranışı İçin Alternatif Denklemler, M. Özer
Kikuchi, R.
1951
. A Theory of Cooperative
Phenomena, Physical Rev. 81 (6), 988-1003. Kikuchi, R. 1966. Path Probabilty Method, Suppl.
Progr. Theo. Phys. 35, 1-17.
Mandelblat, Y., Etzion, Y., Grossman, Y., Golomb, D. 2001. Period doubling of Calcium Spike Firing in a Model of Purkinje Cell dendrite, J. Comput. Neurosci. 11, 43-62.
Özer, M.
2001
. "Analysis of Axonal Response to Sinusoidal Stimulation Based on Squid Giant Axon", Proceedings of ELECO'2001
International Conference on Electrical and Electronics Engineering, 7-11 May 2001. Bursa,
Vol.2, 342-344.
Sacchi, O., Belluzzi, O., Canella, R., Fesce, R. 1998.
A Model of Signal Processing at a Mammalian Sympathetic Neurone, J. Neurosci. Methods
80, 171-180.
Yamada, W. M., Koch, C., Adams, P. R. 1998.
"Multiple Channels and Calcium Dynamics," in: Koch, C., Segev, I. (Eds), Methods in Neuronal Modeling: From Ions to Networks, MIT Press, Cambridge, Mass.

Thank you for copying data from http://www.arastirmax.com