Buradasınız

ENDÜKTİF ÖĞRENME ALGORİTMALARININ KURAL ÜRETME YÖNTEMLERİ VE PERFORMANSLARININ KARŞILAŞTIRILMASI

RULE GENERATION METHODS OF INDUCTIVE LEARNING ALGORITHMS AND COMPARISOIN OF THEIR PERFORMANCES

Journal Name:

Publication Year:

Abstract (2. Language): 
Frequent emphasis on the phrases such as “Information Age” and “Information Society” clearly expresses the importance of knowledge in our daily life. As the importance of knowledge increases, so does the need for tools to reach and retrieve the knowledge. Thanks to great developments in the computer technology, it is possible to store the information generated miles away in an electronic format and retrieve it back quickly at any location in the world, when needed. In addition, rapid developments in programming languages also made it easy to process the information and access it in case of need. In this study, inductive learning techniques which are used to acquire information will be explained and the algorithms developed for such purposes will be compared with each other.
Abstract (Original Language): 
“Bilgi Çağı” ve “Bilgi Toplumu” gibi terimlerin sıklıkla kullanıldığı günümüzde, bilginin önemi daha açık bir şekilde ortaya çıkmaktadır. Bilginin önemi arttığı oranda o bilgiye ulaşabilmeyi sağlayan sistemlerin de önemi artmaktadır. Bilgisayar teknolojisindeki büyük gelişmeler sayesinde, dünyanın herhangi bir yerinde üretilen bilginin sayısal hale getirilerek saklanması ve o bilgiye dünyanın herhangi bir yerinden çok kısa sürede erişim mümkün olmaktadır. Bununla birlikte programlama dillerindeki büyük gelişmeler sayesinde bilgiyi işlemek ve istenen bilgiye erişmek de kolaylaşmaktadır. Bu çalışmada, bilgiyi elde etmek amacıyla kullanılan Endüktif Öğrenme teknikleri anlatılacak ve bu alanda geliştirilen algoritmalar karşılaştırılacaktır.
1 - 9

REFERENCES

References: 

[1]. FEIGENBAUM, E. A., “Expert System in the 1980s”,
in Infotech State of the Art Report on Machine
Intelligence, Ed:A. Bond, Maidenhead, Pergamon,
Infotch, 1981.
[2]. BOSE, I., MAHAPATRA K.R., “Business Data
Mining – A Machine learning Perspective”,
Information & Management 39, 211-225, 2001.
[3]. VAPNIK V.N., CHERVONENKIS A.Y., “On the
uniform convergence of relative frequencies of events
to their probabilities”, Theory of Probability and Its
Applications, 16(2), 264-280, 1971.
[4]. VALIANT, L.G., “A theory of the learnable”,
Communications of the ACM, Vol.27, 1134-1142; or,
Readings in Machine Learning, (1990) Shavlik, J.W.
and Dietterich, T.G. (Eds), Morgan Kaufmann, San
Mateo, CA, 192-200, 1984.
[5]. OBLOW, E.M., “Implementing Valiant’s learnability
theory using random sets”, Machine Learning, 8(1),
Kluwer Academic Publishers, Boston, 45-73, 1992.
[6]. KRZYSZTOF J. C., “An Algorithm Which Learns
Multiple Covers Via Integer Linear Programming Part
I: the CLILP2 algorithm”, Kybernetes, Vol. 24 No. 2,
pp. 29-50, MCB University Press, 0368-492X, 1995.
[7]. MICHALSKI, R.S., “A theory and methodology of
inductive learning”, Machine Learning - An Artificial
Intelligence Approach, Michalski; R.S., Carbonell, J.G.
and Mitchell, T.M. (Eds), Morgan Kaufmann, Los
Altos, CA, 83-134, 1983.
[8]. MITCHELL, T.M., “The need for biases in learning
generalizations”, Readings in Machine Learning,
Shavlik, J.W. and Dietterich, T.G. (Eds), Morgan
Kaufmann, San Mateo, CA, 184-191, 1990.
[9]. QUINLAN, J.R., “Learning efficient classification
procedures and their application to chess end games”,
Machine Learning - An Artificial Intelligence
Approach, Eds: Michalski; R.S., Carbonell, J.G. and
Mitchell, T.M. (Eds), Tioga Publishing Co, Palo Alto.
CA, 463-482, 1983.
[10]. DIETTERICH, T.G., “Limitations on inductive
learning”, Proceedings of the 6th International
Workshop on Machine Learning (89 ML), Ithaca,
NY. and Segre, A.M. (Ed), Morgan Kaufmann, San
Mateo, CA, 124-128, 1989.
[11]. BOLC, L., CYTOWSKI, J., “Search Methods for
Artificial Intelligence”, Academic Press, London,
1992.
[12]. HAUSSLER, D. “Quantifying inductive bias: AI
learning algorithms and Valiant’s learning
framework”, Artificial Intelligence, 36, 177-221;
reproduced in:, Readings in Machine learning, 1990.
[13]. WANG, X., “Inductive Learning Algorithms”, Ph.D.
Thesis, University of Wales Cardiff, 1997.
[14]. MICHALSKI, R.S., KODRATOFF, Y., “Research
in machine learning: recent progress, classification
of methods, and future directions”, Machine
Learning Vol.3, Morgan Kaufmann, San Mateo, CA,
3-30, 1990.
[15]. CENDROWSKA, J., “Knowledge Acquisition for
Expert Systems: Inducing Modular Rules from
Examples”, PhD Thesis, The Open University, 1990.
[16]. BRAMER, M.A., “Automatic Induction of
Classification Rules from Examples Using NPrism”,.
Research and Development in Intelligent
Systems XVI. Springer-Verlag, pp. 99-121, 2000.
[17]. HUNT, E. B., MARIN, J., STONE, P. J.,
“Experiments in induction”, Academic Pess, New
York, 1966.
[18]. QUINLAN, J.R., “Induction of decision trees”,
Machine Learning Vol.1, Kluwer Academic
Publishers, Boston, 81-106; reproduced in:,
Readings in Machine learning, 1990.
[19]. CHENG, J., et al., “Improved decision trees: A
generalized version of ID3”, Proceedings of the Fifth
international conference on Machine Learning, Ann
Arbor, Michigan, 100-106, 1988.
[20]. SCHLIMMER, J.C., FISHER, D.H., “A case study
of incremental concept induction”, AAAI 86-
Proceedings of the 5th National Conference on
Artificial Intelligence, Philadelphia, PA, 496-501,
1986.
[21]. UTGOFF, P.E., “ID5:An incremental ID3”,
Proceedings of the Fifth International Conference on
Machine Learning, The University of Michigan, 107-
120, 1988.
[22]. UTGOFF, P.E., “Incremental induction of decision
trees”, Machine Learning Vol.4, 161-186, 1989.
[23]. QUINLAN, J.R., “C4.5: Programs for Machine
Learning”, Morgan Kaufmann, San Mateo, CA,
1993.
[24]. BREIMAN, L.,et al. “Classification and Regression
Trees”, Wadsworth International Group, Belmont,
California, 1984.
[25]. CRAWFORD, S.L., “Extensions to the CART
algorithm”, Machine Learning and Uncertain
Reasoning - Knowledge-Based Systems, Vol. 3,
Gaines, B and Boose, J. (Eds), Academic Press,
London, 15-35, 1990.
[26]. ZHONG, N., DONG, J., OHSUGA, S., “Rule
discovery by soft induction techniques”,
Neurocomputing 36, p: 171-204, 2001.
[27]. MICHALSKI, R.S., “Synthesis of optimal and quasioptimal
variable-valued logic formulas”, Proceeding
of the 1975 Int. Symposium on Multiple-Valued
Logic, Bloomington, Indiana, 76-87, 1975.
[28]. AKSOY, M.S., “New Algorithms for Machine
Learning”, Thesis of PhD, University of Walles,
Cardiff, United Kingdom, 1993.
[29]. TOLUN, M. R., ABU-SOUD S.M., “ILA:An
Inductive Learning Algorithm For Rule Extraction”,
Expert Systems With Applications, Vol: 14, p:361-
370, 1998.
[30]. TOLUN, M. R., et al., “Improved Rule Discovery
Performance on Uncertainty”, The Second Pacific-
Asia Conference on Knowledge Discovery and Data
Mining (PAKDD-98), Melbourne, Australia, 15-17
April 1998.
[31]. AKGÖBEK, Ö., “Endüktif Öğrenmede Bilgi
Kazanımı için Yeni Algoritmalar”, Doktora Tezi,
Sakarya Üniversitesi, Adapazarı, 2003.
[32]. BLAKE, C.L., MERZ, C.J., “UCI Repository of
Machine Learning Databases”, [http://ftp.ics.uci.edu
/pub/ml-repos/machine-learning-databases/], 1998.
[33]. SGI Standard Template Library Programmer’s
Guide, Silicon Graphics Inc., http://www.sgi.
com/tech/mcl/db., 1996.
[34]. BRAMER, M.A., “Using J-pruned to reduce
overfitting in classification trees”, Knowledge-Based
Systems, Vol:15, 301-308, 2002.
[35]. WU, X., “Rule Induction with Extension Matrices”,
Journal of the American Society for Information
Science, Volume 49, Vol 5, 435-454, 1998.
[36]. HAMILTON, H. J., et al., “RIAC:A Rule Induction
Algorithm Based on Approximate Classification
Technical Report”, S4S 0A2, CS-96-06, ISSN 0828-
3494 ISBN 0-7731-0321-X, 35-37, 1996.
[37]. THRUN, S.B., BALA, J.,“The MONK's Problems A
Performance Comparison of Different Learning
Algorithms”, Carnegie Mellon University, CMUCS-
91-197, 1991.
[38]. AN, A., “Learning Classification Rules From Data”,
Computers & Mathematics with Applications, Vol
45, Issues 4-5, 737-748, 2003.
[39]. FOURNIER, D., CREMILLEUX, B., “A Quality
Index For decision Tree Pruning”, Knowledge-Based
System 15, 37-43, 2002.

Thank you for copying data from http://www.arastirmax.com