Buradasınız

GÜNEYDOĞU ANADOLU BÖLGESİ’NDE DAĞILIŞ GÖSTEREN TATLISU SALYANGOZU Bithynia tentaculata (L., 1758) (GASTROPODA: PROSOBRANCHIA)’NIN YAĞ ASİTİ İÇERİĞİ

FATTY ACID COMPOSITION OF FRESHWATER SNAIL Bithynia tentaculata (L., 1758) (GASTROPODA: PROSOBRANCHIA) DISTRIBUTED IN THE SOUTHEAST ANATOLIA

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, body lipids of a freshwater snail Bithynia tentaculata collected from Sultanköy in Mardin in April 2007 were fractionated by thin layer chromatography (TLC). Total lipids, fractionated lipids such as phospholipids and neutral lipids of whole snail were analyzed by capillary gas chromatography and gas chromatography-mass spectrometry. In the analysis, saturated fatty acids such as C12:0, C14:0, C15:0, C16:0, C17:0, C18:0; monounsaturated fatty acids such as C16:1ω7, C18:1ω9, C20:1ω9 and polyunsaturated fatty acids such as C18:2ω6, C18:3ω3, C20:2ω6, C20:4ω6 and C20:5ω3 acids were found. Odd-numbered fatty acids and C20 polyunsaturated fatty acids structures were confirmed by gas chromatography-mass spectrometry. The percentages of these components in lipid fractions were compared with each other. In the percentages, C16:0, C16:1ω7, C18:1ω9, C18:3ω3 and C20:4ω6 acids were the most abundant fatty acids. Some proportional differences were found among the phospholipid, neutral lipid and total lipid. For instance, the highest level of saturated fatty acid (45.1%) and the highest level of monounsaturated fatty acids (28.0%) were found in neutral lipid whereas; the highest level of polyunsaturated fatty acids (46.5%) was found in phospholipid fraction. Comparing with total and neutral lipids, the percentages of C20:4ω6 and C20:5ω3 acids, precursors of eicosanoids, were found apparently high in phospholipid fraction.
Abstract (Original Language): 
Bu çalışmada, Nisan 2007 tarihinde Mardin ilinin Sultanköy Köyü’nden toplanan tatlısu salyangozu Bithynia tentaculata'nın total vücut lipitleri, ince tabaka kromatografi ile fraksiyonlandı. Salyangozun, total vücut lipitleri ile fosfolipit ve nötral lipit fraksiyonundaki yağ asitleri, gaz kromatografi ve gaz kromatografi-kütle spektrometresi (GC-MS) ile analizlendi. Analizlerde, doymuş yağ asitlerinden C12:0, C14:0, C15:0, C16:0, C17:0, C18:0; tekli doymamış yağ asitlerinden C16:1ω7, C18:1ω9, C20:1ω9 ve çoklu doymamış yağ asitlerinden C18:2ω6, C18:3ω3, C20:2ω6, C20:4ω6 ve C20:5ω3 asitler saptandı. Tek karbonlu ve 20 karbonlu çoklu doymamış yağ asitlerinin yapıları, gaz kromatografi-kütle spektrometre ile doğrulandı. Lipit fraksiyonları arasında bu bileşenlerin yüzde değerleri karşılaştırıldı. Yüzde dağılımda en çok C16:0, C16:1ω7, C18:1ω9, C18:3ω3 ve C20:4ω6 asitler tespit edildi. Fosfolipit, nötral lipit ve total lipit yüzde içeriğinde bazı farklılıklar tespit edildi. Örneğin, total doymuş yağ asiti yüzdesi (%45.1) ile total tekli doymamış yağ asiti yüzdesi (%28.0) en fazla nötral lipitte; total çoklu doymamış yağ asiti yüzdesi (%46.5) ise en çok fosfolipitte saptandı. Eikosanoidlerin öncül maddesi olan C20:4ω6 ve C20:5ω3 asitlerin yüzde oranları nötral ve total lipit analizlerine göre fosfolipit fraksiyonunda daha fazla bulundu.
28 - 33

REFERENCES

References: 

[1] Ekman, S. Zoogeography of the Sea, 417, Plenum Press,
London, 1953.
[2] Vernberg, W.B. and Vernberg, F.J. Environmental
Physiology of Marine Animals, 346, Springer, Berlin,
1972.
[3] Khlebovich, V.V. The Critical Salinity of Biological
Processes, 230, Nauka, Leningrad, 1974.
[4] Schütt, H. and Şeşen, R. Theodoxus in South-Eastern
Anatolia, TURKEY (Gastropoda: Prosobranchia,
Neritidae), Basteria, 53, 39-46, 1989.
[5] Ackman, R.G. and Hooper, S.N. Non-methyleneinterrupted
fatty acids in lipids of shallow water
marine invertebrates: a comparison of two molluscs
with the sand shrimp. Comp. Biochem. Physiol., 46B,
153-165, 1973.
[6] Johns, R.B., Nichols, P.D. and Perry, G.J. Fatty acid
components of nine species of molluscs of the littoral
zone from Australian waters. Comp. Biochem.
Physiol., 65B, 207-214, 1980.
[7] Alimova, E.K., Astvatzatur’an, A.T. and Zharov, L.B.
Lipids and fatty acids in normal and some
pathological states. In Medicine (Ed. by Levachev,
M.M.), 280, Meditsina, Moscow, 1975.[8] Wennmalm, A. Vasodilatory action of arachidonic
acid in human following indomethacin treatment.
Prostaglandins, 13, 809-810, 1977.
[9] Rudin, D.O. The dominant diseases of modernized
socities as omega-3 essential fatty acid deficiency
syndrome: substrate beri-beri. Med. Hypothesses, 8,
17-47, 1982.
[10]Voogt, P.A. Lipids: Their distribution and
metabolism in the Mollusca. In Metabolic
Biochemistry and Molecular Biomechanics (Ed. by
Hochachke, P.W.), 1, 329-370. Academic Press,
NewYork, 1983.
[11] Mitra, S. and Sur, R.K. Changes in the lipid and
carbohydrate contents of the digestive gland during
aestivation of two gastropods Achatina fulica and Pila
globosa. Environ. Ecol., 7, 658-662, 1989.
[12] Bligh, E.G. and Dyer, W.J. A rapid method of total
lipid extraction and purification. Can. J. of Biochem.
and Physiol, 37, 911-917, 1959.
[13] Stanley-Samuelsson, D.W. and Dadd, R.H. Long
chain polyunsaturated fatty acids: Patterns of
occurrence in insects. Biochemistry, 13, 549-55, 1983.
[14] De Moreno, J.E.A., Pollero, R.J., Moreno, V.J. and
Brenner, R.R. Lipids and fatty acids of the mussel
(Mytilus platensis d’Orbigny) from South Atlantic
waters. J. Exp. Mar. Biol. Ecol., 263-276, 1980.
[15] Pollero, R.J., Brenner, R.R. and Gros, G.E. Seasonal
changes in lipid and fatty acid composition of the
freshwater mollusc Diplodom patagonicus. Lipids, 16
(2), 109-113, 1981.
[16] Pollero, R.J., Irazu, C.E. and Brenner, R.R. Effect
of sexual stage on lipids and fatty acids of Diplodon
delodontus. Comp. Biochem. Physiol., 76B, 927-931,
1983.
[17] Misra, S., Ghosh, K.M., Choudhury, A., Dutta, K.A.,
Pal, K.P. and Ghosh, A. Fatty acids from Macoma sp.
of bivalve mollusc. J. Sci. Food Agric., 36, 1193-
1196, 1985.
[18] Dembitsky, V.M., Kashin, A.G. and Stefanow, K..
Comparative investigation of phospholipids and fatty
acids of freshwater molluscs from Volga River Basin.
Comp. Biochem. Physiol., 102B (1), 193-198, 1992.
[19] Fried, B., Rao, K.S., Sherma, J. and Huffmani, J.E.
Fatty acid composition of Goniobasis virginica, Physa
sp. and Viviparus malleatus (Mollusca: Gastropoda)
from lake Musconetcong, New Jersey. Biochem. Syts.
and Ecol., 21(8), 809-812, 1993.
[20] Dembitsky, V.M., Rezanka, T. and Kashin, A.G.
Fatty acid and phospholipids composition of
freshwater molluscs Anadonta piscinalis and Limnaea
fragilis from the River Volga. Comp. Biochem.
Physiol., 105B, 3(4), 597-601, 1993.
[21] Isay, V.S. and Busarova, N.G. Study on fatty acids
composition of marine organisms–I. Unsaturated fatty
acids of Japan Sea invertebrates. Comp. Biochem.
Physiol., 77B, (4), 803-810, 1984.
[22]Thompson, S.N. A review and comparative
characterization of the fatty acid compositions of
seven insect orders. Comp. Biochem. Physiol., 45B,
467-482, 1973.
[23] Spike, B.P., Wright, R.J., Danielson, S.D. and
Stanley-Samuelson, D.W. The fatty acid
compositions of phospholipids and triacylglycerols,
from two chinch bug species Blissus leucopterus
leucopterus and B. iowensis (Insecta; Hemiptera;
Lygaeidae) are similar to the characteristic dipteran
pattern, Comp. Biochem. Physiol., 99B, 799-802,
1991.
[24] Kharlamenko, V.I., Zhukova, N.V., Khotimchenko,
S.V., Svetashev, V.I., and Kamenev, G.M. Fatty
acids as markers of food sources in a shallow water
hydrothermal ecosystem (Kraternaya Bight,Yankich
Island, Kurile Islands). Mar. Ecol. Prog. Ser., 120,
231-241, 1995.
[25] Go, J.V., Rezanka, T., Srebnik, M. and Dembitsky,
V.M. Variability of fatty acid component of marine
and freshwater gastropod species from the littoral
zone of the Red Sea, Mediterranean Sea and Sea of
Galilee. Biochem. Syts. and Ecol., 30, 819-835, 2002.
[26] Zhukova, N.V. The pathway of the biosynthesis of
non-methylene-interrupted dienoic fatty acids in
molluscs. Comp. Biochem. Physiol., 110B, 801-804,
1991.

Thank you for copying data from http://www.arastirmax.com