Buradasınız

TEMPERLENMİŞ BEYNİTİK BİR ÇELİĞİN BALİSTİK DAVRANIŞI

BALLISTIC BEHAVIOUR OF A TEMPERED BAINITIC STEEL

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this study, failure occured after the interaction between an armor piercing 7.62 mm caliber projectile and a tempered bainitic steel was investigated. The shot was performed at zero degree with a projectile velocity of 840 m/s. After the shot, microstructural and fractographical examinations were carried out on the sample, taken from the perforated region. In the etched sample, it is observed that the morphology of the original microstructure has changed and shear/adiabatic shear bands formed in regions close to the direction of penetration. The perforation mode of the steel is a typical petalling.
Abstract (Original Language): 
Bu çalışmada, temperlenmiş beynitik bir çeliğin 7,62 mm kalibre bir zırh delici ile olan etkileşimi sonrasında meydana gelen hasar incelenmiştir. Mermi çarpma hızı 840 m/s olup atış sıfır derecelik bir açıda gerçekleştirilmiştir. Atış sonrası oluşan delinme yöresinden alınan numune üzerinde mikroyapısal ve fraktografik incelemeler yapılmıştır. Dağlanmış numunede, penetrasyon doğrultusuna yakın yörelerde orijinal mikroyapı morfolojisinin değiştiği ve kayma/adyabatik kayma bantlarının oluştuğu gözlenmiştir. Çeliğin delinme modu ise tipik bir taçyaprağı şeklinde açılmadır.
1-12

REFERENCES

References: 

Beckman, E., Finnegan, S. A., 1973. Metallurgical Effects at High Strain
Rates, Plenum Press, USA.
Borvik, T., Dey, S., Clausen, A. H., 2009. Perforation resistance of five
different high-strength steel plates subjected to small-arms projectiles.
International Journal of Impact Engineering, 36 (7): 948-964.
Demir, T., Übeyli, M., Yıldırım, R. O., 2008. Investigation on the ballistic
impact behavior of various alloys against 7.62 mm armor piercing
projectile. Materials & Design, 29 (10): 2009-2016.
Dikshit, S. N., 2000. Influence of hardness on perforation velocity in steel
armour plates. Defence Science Journal, 50 (1): 95-99.
Edwards, M. R., Mathewson, A., 1997. The ballistic properties of tool steel
as a potential improvised armour plate. International Journal of
Impact Engineering, 19 (4) : 297-309.
Gama, B. A., Bogetti, T. A., Fink, B. K., Yu, C. J., Claar, D., Eifert, H. H.,
Gillespie, J. W., 2001. Aluminum foam integral armor: a new dimension
in armor design. Composite Structures, 52 (3-4): 381-395.
Gonçalves, D. P., de Melo, F. C. L., Klein, A. N., Al-Qureshi, H. A., 2004.
Analysis and investigation of ballistic impact on ceramic/metal
composite armour. International Journal of Machine Tools and
Manufacture, 44 (2-3): 307-316.
Hu, C. J., Lee, P. Y., Chen, J. S., 2002. Ballistic performance and
microstructure of modified rolled homogeneous armor steel. Journal of
the Chinese Institute of Engineers, 25 (1): 99-107.
Jena, P. K., Kumar, K. S., Krishna, V. R., Singh, A. K., Bhat, T. B., 2008.
Studies on the role of microstructure on performance of a high strength
armour steel’, Engineering Failure Analysis, 15: 1088–1096.
Karagöz, Ş., Andren, H. O., 1992. Secondary hardening in high speed
steels. Z. f. Metallkunde, 83: 386-394.
ATAPEK-KARAGÖZ
12
Karagöz, Ş., Atapek, H., Yılmaz, A., 2008. Araçlarda su verilmiş ve
temperlenmiş çeliklerin zırh malzemesi olarak kullanımı ve balistik
açıdan mekanik özellikleri. IV. Uluslararası Otomotiv Teknolojileri
Kongresi, Bildiriler Kitabı, 579-586.
Matsubara H., Osuka, T., Kozasu, I., Tsukada, K., 1972. Optimization of
metallurgical factors for production of high strength, high toughness
steel plate by controlled rolling. Transactions ISIJ, 12: 435-443.
Maweja, K., Stumpf, W., 2008. The design of advanced performance high
strength low-carbon martensitic armour steels: Part 1. Mechanical
property considerations, Materials Science and Engineering: A, 485
(1-2): 140-153.
Mills, K., Davis, J. R., Destefani, J. D., 1987. Fractography. ASM
Handbook, Vol. 12, Materials Park, Ohio/USA.
Sangoy, L., Meunier, Y.,Pont, G., 1988. Steels for ballistic protection. Israel
Journal of Technology, 24: 319-326.
Shokrieh, M. M., Javadpour, G. H., 2008. Penetration analysis of a
projectile in ceramic composite armor. Composite Structures, 82 (2):
269-276.
Sorensen, B. R., Kimsey, K. D., Silsby, G. F., Scheffler, D. R., Sherrick, T.
M., de Rosset, W. S., 1991. High velocity penetration of steel targets.
International Journal of Impact Engineering, 11 (1): 107-111.
U. S. Military Specification, 1990. MIL-A-12560H(MR) -Armor Plate, Steel,
Wrought, Homogenous (For Use in Combat-Vehicles and for
Ammunition Testing), USA.
Verhoeven, J. D., 1975. Fundamentals of physical metallurgy. John
Wiley & Sons, NY.

Thank you for copying data from http://www.arastirmax.com