Buradasınız

Kritik güç ile maksimal oksijen tüketimi ve anaerobik eşik arasındaki ilişkiler

The relationships of the critical power to maximal oxygen utilization and anaerobic threshold

Journal Name:

Publication Year:

Abstract (2. Language): 
To evaluate the relations among the critical power, maximal oxygen utilization and anaerobic thresh-olds. Method: İn order to determine the maximal oxygen consumption and anaerobic thresholds on 30 sedentary men aged 18-22 years, an incremental maximal exercise test on cycle ergometer was performed. Respiratory gas parameters were recorded by SensorMedics 2900 Metabolic Measurement Cart in every 20, heart rate values were recorded by Polar Sport Tester in every 5 seconds and biood lactate concentrations were determined by Accusport Lactate Analyzer on capillary blood samples from finger point at the end of every two minutes. From the gas exchange parameters and heart rate and lactate values, three separate ventilatory thresholds. heart rate deflection point and the onset of biood lactate accumulation were caiculated. Three different loads were applied for the critical povver test at different days and linear vvork-time relationship method was used to estimate the crit¬ical power. Each participant performed an exercise test at his critical povver until exhaustion and then the duration of exercise and work vvere determined. Results: İt was found that the critical povver was correlated with V02max and some anaerobic thresholds. The critical povver was lovver than the load at vvhich V02max vvas occurred, but higher than the loads at vvhich anaerobic thresholds vvere occurred. The duration of exercise and vvork at the crit¬ical povver vvere not correlated with V02max and anaerobic thresholds. Conclusion: Although the cn'tical povver is related to the maximal aerobic povver and some anaerobic thresholds, vve consider that duration of exercise and vvork at the critical povver can not be used as criteria İn the determination of endurance since exercise time and vvork at the critical povver are not correlated to these endurance parameters.
Abstract (Original Language): 
Amaç: Kritik güç, maksimal oksijen tüketimi ve anaerobik eşikler arasındaki ilişkileri incelemek. Yöntem: 18-22 yaşlarındaki 30 sedanter erkeğe bisiklet ergometresinde yoğunluğu giderek artan maksimal egzersiz yaptırıldı. Solunum gaz parametreleri SensorMedics 2900 Metabolik Ölçüm Kartı kullanılarak 20, kalp hızı değerleri ise Polar Sport Tester aracılığıyla 5 saniyede bir kaydedildi. İki dakikada bir el parmak ucundan kapiller kan alınarak Accusport Laktat Analizörü ile laktat konsantrasyonları belirlendi. Gaz değişim parametreleri, kalp hızı ve laktat değerlerinden 3 ayrı ventilatuvar eşik, kalp hızı sapma noktası ve kan laktat birikmesinin başlangıcı hesaplandı. Kritik güç testi için farklı günlerde üç ayrı yük uygulandı ve lineer iş-zaman İlişkisi kullanılarak kritik güç saptandı. Katılımcılara kritik güç değerlerinde tükenmeye kadar egzersiz yaptırılarak kritik güçteki egzersiz süresi ve İş belir¬lendi. Bulgular: Kritik güç, Vö2max ve bazı anaerobik eşiklerle ilişki bulundu. Kritik güç, V02max'ın oluştuğu yük¬ten düşük, anaerobik eşiklerin oluştukları yüklerden yüksekti. Kritik güçteki egzersiz süresi ve iş ile Vö2max ve anaerobik eşikler arasında ilişki yoktu. Sonuç: Kritik gücü maksimal aerobik güçle ve bazı anaerobik eşiklerle ilişkili bulmamıza rağmen, kritik güçteki egzersiz süresi ve işle bu dayanıklılık parametreleri arasında ilişki bula¬madığımız için kritik güçteki egzersiz süresinin ve işin, dayanıklılığın tayininde ölçü olarak kullanılamayacaklarını düşünüyoruz.
9-14

REFERENCES

References: 

1. Hill DW. The critical power concept: A review. Sports Med 1993;16:237-54.
2. Housh DJ, Housh TJ, Bauge SM. The accuracy of the critical power test for predicting time to exhaustion dur-ing cycle ergometry. Ergonomics 1989;32:997-1004.
3. Housh DJ, Housh TJ, Bauge SU. A methodological consideration for the determination of critical powerand anaerobic work capacity. Res Quart Exerc Sport 1990;61:406-9.
4. Vandewalle H, Vautier JF, Kachouri M, LeChevalier JM, Monod H. Work-exhaustion time relationships and critical power concept: A critical review. J Sports Med Phys Fitness 1997;37:89-102.
5. Nebelsick-Gullett LJ, Housh TJ, Johnson GO, Bauge SM. A comparison between methods of measuring anaerobic vvork capacity. Ergonomics 1988;31:1413-9.
6. McLellan TM, Cheung KSY. A comparative evaluation of the individual anaerobic threshold and the critical povver. Med Sci Sports Exerc 1992;24:543-50.
7. Taylor SA, Batterham AM. The reproducibility of esti-mates of critical povver and anaerobic vvork capacity in upper-body exercise. Eur J Appl Physİol 2002;87:43-9.
8. Moritani T, Nagata A, DeVeries HA, Muro M. Critical povver as a measure of physical vvork capacity and anaerobic threshold. Ergonomics 1981;24:339-50.
9. Talbert SM, Smith JC, Scarborough PA, Hill DVV. Relationships betvveen the povver asymptote and indices of anaerobic and aerobic povver. Med Sci Sports Exerc 1991 ;23:S27.
10. Smith JC, Dangelmaier BS, HİN DW. Critical povver is related to cycling time that performance. Int J Sports Med 1999;20:374-8.
11. Gaesser GA. Carnevale TJ, Garfinkel A, VValter DO. Womack CJ. Estimation of critical povver vvith nonlinear and linear models. Med Sci Sports Exerc 1995;27:1430-8.
12. Housh TJ, DeVries HA, Housh DJ. Tichy MvV, Smyth KD, Tichy AM. The relationship betvveen critical povver
and the onset of biood lactate accumulation. J Sports Med Phys Fitness 1991:31:31 -6.
13. Hughson RL. Orok CJ, Staudt LE. A high velocity tread-
mili running test to assess endurance running poîentİal.
IntJ Sport Med 1984;5:23-5.
14. Hopkins WG. Edmond İM. Hamilton BH. Macfarlane
DJ, Ross BH. Relation betvveen povver and endurance for treadmiii running of short duration. Ergonomics 1989;32:1565-71
15. Housh TJ, Johnson GO, McDovveil SL, Housh DJ, . Pepper M. Physiological responses at the fatigue threshold. Int J Sports Med 1991;12:305-8.
16. Arabi H, Vandevvalle H, Kapitaniak B, Monod H. Evaluation of vvheelchair users İn the field and labora-
tory: Feasibility of progressive tests and critical velocity
tests. Intern J Indust Ergonomics 1999;24:483-91.
17. Le Chevalier JM. Vandevvalle H, Thepaut-Mathieu C. Stein JF, Çaplan L Local critical povver İs an index of local endurance. Eur J Appl Physiol 2000;81:120-7.
18. VVakayoshi K, Yoshida T, Udo M, Kasai T, Moritani T. Mutoh Y, et al. A simple method for determining critical speed as svvimming fatigue threshold in competiiive svvimming. Int J Sports Med 1992;13:367-71.
19. VVakayoshi K. Ikuta K. Yoshida T, Udo M: Moritani T, Miyashita M. The determination and validity of critical speed as an index of svvimming performance in com-petitive svvimmer. Eur J Appl Physiol 1 992:64:153-7
20. Poole DC, Ward SA, Gardner GW, VVhipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 1988:31:1265¬79.
21. DeVries HA, Tichy MW: Housh TJ, Smyth KD, Tichy AM, Housh DJ. A method for estimating physical work-ing capacity at the fatigue threshold (PVVKGF). Ergonomics 1987:30:1195-204
22. Jenkins DG, Ouigley BM. Biood lactate in trained cyclists during cycle ergometry at critical povver. Eur Appl Physiol 1990;61:278-83.
23. Pringie JSM. Jones AM. Maximal lactate steady state. critical povver and EMG during cycling. Eur J Appi Physiol 2002;88:214-26
24. Vautier JF, Vandevvalle H, Arabi H, Monod H. Critical povver as an endurance index. App! Ergonomics 1995;26:117-21.
25. Smith CGM, Jones AM. The relationship betvveen criti¬cal velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur J Appl Phyiol 2001;85:19-26.

Thank you for copying data from http://www.arastirmax.com