Buradasınız

MULTİPL SKLEROZDA AKSON KAYBI

Axon loss in multiple sclerosis

Journal Name:

Publication Year:

Abstract (2. Language): 
Aim: Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Clinical, imaging, and pathological studies in multiple sclerosis have generally emphasized the rela¬tive preservation of axons in comparison with myelin. Recent evidence, however, demonstrates that axonal loss is also significant, affects long tracts such as the corticospinal and sensory tracts and relates closely to functional disability. In this article we will consider emerging observations that reflect on the mechanisms of axon loss. Main Findings: There are different mechanisms of axon loss occur. Mechanisms of axon loss: Axonal damage in the inflammation, demyelination- induced axon loss, wallerian degeneration, and final common pathway in the axon loss. Conclusion: Axon loss is irreversible and responsible for long term disability. However therapies are also needed that enhance remyelination or neuroprotective.
Abstract (Original Language): 
Amaç: Multiple Skleroz (MS), santral sinir sisteminin inflamatuvar demiyelinizan hastalığıdır. MS'de klinik, görüntüleme ve patolojik çalışmalar genel olarak miyelinle kıyaslandığında aksonun relatif olarak korunduğunu vurgulamaktadır. Bununla birlikte son kanıtlar, anlamlı akson kaybının da olduğunu, kortikospinal, sensoriyel traktlar gibi uzun traktların etkilediğini ve fonksiyonel sakatlıkla yakın ilişkili olduğunu göstermektedir. Bu makalede biz akson kaybı mekanizmalarını vurgulayacağız. Ana Bulgular: Akson kaybı gelişiminin farklı mekanizmaları vardır. Akson kaybı mekanizmaları: infla-masyonda aksonal hasar, demiyelinizasyon aracılı aksonal kayıp, wallerian dejenerasyon (WD) ve akson kaybında ortak son yol olarak sınıflandırılabilir. Sonuç: Akson kaybı geri dönüşsüz ve uzun dönemde sakatlık nedenidir. Tedaviler remiyelinizasyon veya nöroprotektiyon gerektirir.
151-156

REFERENCES

References: 

1. Bjartmar C, Yin X, Trapp BD. Axonal pathology in myelin disorders. J Neurocytol 1999; 28: 383-95.
2. Como L. Neuroprotection in multiple sclerosis. MS forum Mach 2004 Workshop.
3. Lassmann H, Bruck W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis implications for diag¬nosis and therapy. Trends Mol Med 2001;7:115- 21.
4. Lassmann H. Mechanisms of demyelination and tis¬sue destruction in multiple sclerosis. Clin Neurol Neurosurg 2002; 104: 168- 71.
5. Trapp BD, Peterson J, Ransohott R. Axonal transsec¬tion in the lesions of multiple sclerosis. New Eng J Med
1998; 338: 278- 85.
6. Miller DH, Barkhof F, Frank JA, Parker GJ, Thompson AJ. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 2002; 125: 1676- 95.
7. DeLuca GC, Ebers GC, Esiri MM. Axonal loss in mul¬tiple sclerosis: a pathological survey of the corticospinal
and sensory tracts. Brain 2004; 127: 1009-18.
8. Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain 1997; 120: 393-9.
9. Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD. Macrophages and neurodegeneration. Brain Res Rev
2005; 48:185-95.
10. Halfpenny C, Benn T, Scolding N. Cell translanta-tion, myelin repair, and multiple sclerosis. Lancet
Neurol 2002; 1: 31- 40.
11. Gonen O, Catalaa I, Babb JS. Total brain N-acety-laspartate: a new measure of disease load in MS.
Neurology 2000; 54: 15- 9.
12. Rovaris M, Gallo A, Falini A, Benedetti B, Rossi P, Comola M, Scotti G, Comi G, Filippi M. Axonal injury and overall tissue loss are not related in primary pro-gressive multiple sclerosis. Arch Neurol 2005; 62: 898¬902.
13. Paolillo A, Piattella MC, Pantano P. The relationship between inflamation and atrophy in clinically isolated syndromes suggestive of multiple sclerosis. A monthyl MRI study after triple-dose gadolinium-DTPA. J Neurol
2004; 251: 432- 9.
14. Rieckmann P. Neurodegeneration and clinical rel-evance for early treatment in multiple sclerosis. Int MS J 2005; 12: 42- 51.
15. Bruck W. Inflammatory demyelination is not cen¬tral to the pathogenesis of multiple sclerosis. J Neurol
2005; 252 Suppl 5:v10-5.
16. Chao CC, Hu S. Tumor necrosis factor-alpha poten¬tiates glutamate neurotoxicity in human fetal brain cell cultures. Dev Neurosci 1994; 16: 172-9.
17. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 2000; 28: 1456-62.
18. Nimnual AS, Taylor LJ, Bar-Sagi D. Redox-depend-ent downregulation of Rho by Rac. Nat Cell Biol 2003; 5: 236-41.
19. Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclero¬sis: the need for effective antioxidant therapy. J Neurol
2004; 251: 261-8.
20. Besler HT, Comoglu S. Lipoprotein oxidation, plas¬ma total antioxidant capacity and homocysteine level in patients with multiple sclerosis. Nutr Neurosci 2003;
6: 189-96.
21. Ferretti G, Bacchetti T, DiLudovico F, Viti B, Angeleri VA, Danni M, Provinciali L. Intracellular oxida-tive activity and respiratory burst of leukocytes isolated from multiple sclerosis patients. Neurochem Int 2006;
48: 87- 92.
22. Lu F, Selak M, O'Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B. Oxidative damage to mitochon-drial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci
2000; 177: 95-103.
23. Touil T, Deloire-Grassin MS, Vital C, Petry KG,
Brochet B. In vivo damage of CNS myelin and axons induced by peroxynitrite. NeuroReport 2001; 12:
3637-44.
24. Redford EJ, Kapoor R, Smith KJ. Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain 1997; 120:
2149-57.

Thank you for copying data from http://www.arastirmax.com