Buradasınız

Yürüyüş ve Koşu Aktiviteleri Süresince Yağ ve Karbonhidrat Oksidasyonundaki Değişimler

Changes in Fat and Carbohydrate Oxidation During Walking and Running Activities

Journal Name:

Publication Year:

Abstract (2. Language): 
The aim of the study was to investigate the changes in fat and carbohydrate oxidation rates in the same and different activity speed during walking and running. Eleven healthy males participated in this study. The subjects’ individual preferred walk-to-run transition speeds (WRTS) were determined. Each subject covered 1.5 mile distance for four exercise tests; walking (WRTS-W) and running (WRTS-R) tests at WRTS, 2 km.h-1 slower walking than WRTS (WRTS-2) and 2 km.h-1 faster running than WRTS (WRTS+2). The expired air was measured and analyzed breath-by-breath using an automated online system and heart rate was monitored and recorded throughout walking and running tests. Maximal fat oxidation was observed at the WRTS-R activity. Fat oxidation rate was significantly higher in WRTS-R than WRTS-W. Also, carbohydrate oxidation rates were significantly higher in WRTS-W activity than WRTS-2 and WRTS-2 activities. Our results indicate that differences in fat oxidation during running and walking might have been resulted from activity intensity rather than activity mode.
Abstract (Original Language): 
Bu çalışmada aynı ve farklı hızlarda yapılan yürüyüş ve koşu egzersizleri süresince yağ ve karbonhidrat oksidasyon oranlarındaki değişimlerin incelenmesi amaçlandı. Araştırmaya düzenli olarak egzersiz yapmayan, orta düzeyde aktif ve sigara kullanmayan 11 sağlıklı erkek öğrenci gönüllü olarak katıldı. Katılımcıların bireysel yürüyüşten koşuya geçiş hızları (YKGH) belirlendi. Katılımcıların her biri 2413,5 metrelik mesafeyi ayrı günlerde kendi YKGH ‘nda yürüyüş (YKGH-Y), koşu (YKGH-K) ve bu hızdan 2 km/saat daha yavaş yürüyüş (YKGH-2), 2 km/saat daha hızlı koşu (YKGH+2) olmak üzere dört farklı aktiviteyle kat etti. Yürüyüş ve koşu aktiviteleri sürecinde pulmoner gaz değişimi indirekt kalorimetreyle takip edilerek, yağ ve karbonhidrat oksidasyon miktarları hesaplandı. En yüksek yağ oksidayonu YKGH’da yapılan koşu aktivitesinde meydana geldi ve bu oksidasyon miktarı YKGH-Y aktivitesine göre önemli düzeyde yüksekti. YKGH-Y aktivitesindeki karbonhidrat oksidasyon miktarı YKGH-2, YKGH+2 aktivitelerinden önemli düzeyde yüksekti. Yürüyüş veya koşu aktivitelerinde yağ oksidasyonu miktarlarındaki farklılıkların aktivite tipinden ziyade, aktivitelerin yoğunluklarından kaynaklandığı söylenebilir.
95-100

REFERENCES

References: 

1. Tseh W, Bennett J, Caputo JL, Morgan DW. Comparison
between preferred and energetically optimal transition speeds
in adolescents. Eur J Appl Physiol. 2002; 88:117-21.
2. Fogelholm M, Kukkonen-Harjula K, Nenonen A, Pasanen M.
Effects of walking training on weight maintenance after a verylow-energy diet in premenopausal obese women. Arch Intern
Med. 2000;160:2177-84.
3. Revan S, Balcı ŞS, Pepe H, Aydoğmuş M. Sürekli ve interval
koşu antrenmanlarının vücut kompozisyonu ve aerobik kapasite
üzerine etkileri, SPORMETRE Beden Eğitimi ve Spor Bilimleri
Dergisi 2008;6:193-7.
4. Duscha BD, Slentz CA, Johnson JL, Houmard JA, Bensimhon
DR, Knetzger KJ et al. Effects of Exercise Training Amount
and Intensity on Peak Oxygen Consumption in Middle-Age
Men and Women at Risk for Cardiovascular Disease. Chest.
2005;128:2788-93.
5. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin
BA, et al. Physical activity and public health: updated
recommendation for adults from the American College of
Sports Medicine and the American Heart Association. Med Sci
Sports Exerc. 2007;39:1423-34.
6. Achten J, Venables MC, Jeukendrup AE. Fat oxidation rates
are higher during running compared with cycling over a wide
range of intensities. Metabolism. 2003;52:747-52.
7. Venables MC, Achten J, Jeukendrup AE: Determinants of fat
oxidation during exercise in healthy men and women: a crosssectional study. J Appl Physiol. 2005;98:160-7.
8. Achten J, Jeukendrup AE. Optimizing fat oxidation through
exercise and diet. Nutrition. 2004;20(7-8):716-27.
9. Pillard F, Moro C, Harant I, Garrigue E, Lafontan M, Berlan
M, et al. Lipid oxidation according to intensity and exercise
duration in overweight men and women. Obesity (Silver
Spring). 2007;15:2256-62.
10. Ranallo RF, Rhodes EC. Lipid metabolism during exercise.
Sports Med. 1998 Jul;26(1):29-42.
11. Jeukendrup AE. Modulation of carbohydrate and fat utilization
by diet, exercise and environment. Biochem Soc Trans.
2003;31:1270-73.
12. Brooks GA, Mercier J. Balance of carbohydrate and lipid
utilization during exercise: the “crossover” concept. J Appl
Physiol. 1994;76:2253-61.
13. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz
JF, Endert E, Wolfe RR. Regulation of endogenous fat and
carbohydrate metabolism in relation to exercise intensity and
duration. Am J Physiol. 1993;265:E380-E391.
14. Bergman BC, Brooks GA. Respiratory gas-exchange ratios
during graded exercise in fed and fasted trained and untrained
men. J Appl Physiol. 1999;86:479-87.
15. Kang J, Hoffman JR, Ratamess NA, Faigenbaum AD, Falvo
M, Wendell M. Effect of exercise intensity on fat utilization in
males and females. Res Sports Med. 2007;15(3):175-88.
16. Kostyak JC, Kris-Etherton P, Bagshaw D, DeLany JP, Farrell
PA. Relative fat oxidation is higher in children than adults. Nutr
J. 2007;6:19.
17. Zunquin G, Theunynck D, Sesboüé B, Arhan P, Bouglé D.
Comparison of fat oxidation during exercise in lean and
obese pubertal boys: clinical implications. Br J Sports Med.
2009;43:869-70.
18. Capostagno B, Bosch A: Higher fat oxidation in running than
cycling at the same exercise intensities. Int J Sport Nutr Exerc
Metab. 2010;20:44-55.
19. Durnin JV, Womersley J. Body fat assessed from total
body density and its estimation from skinfold thickness:
measurements on 481 men and women aged from 16 to 72
years. Br J Nutr. 1974 Jul;32(1):77-97.
20. Cooper, CB, and Storer, TW. Exercise Testing and Interpretation:
A Practical Approach. New York: Cambridge University Press.
2001: s 242.
21. Noonan V, Dean E. Submaximal exercise testing: clinical
application and interpretation. Phys Ther 2000;80:782-807.
22. Rotstein A, Inbar O, Berginsky T, Meckel Y. Preferred transition
speed between walking and running: Effects of training status.
Med Sci Sports Exerc. 2005; 37:1864-70.
23. Frayn KN. Calculation of substrate oxidation rates in vivo from
gaseous exchange. J Appl Physiol. 1983;55:628-34.
24. Minetti AE, Boldrini L, Brusamolin L, Zamparo P, McKee T. A
feedback-controlled treadmill (treadmill-on-demand) and the
spontaneous speed of walking and running in humans. J Appl
Physiol. 2003;95:838-43.
25. Monteiro WD, Araújo CG. Cardiorespiratory and perceptual
responses to walking and running at the same speed. Arq Bras
Cardiol. 2009;93:418-25, 410-7.
26. Ganley KJ, Stock A, Herman RM, Santello M, Willis WT. Fuel
oxidation at the walk-to-run-transition in humans. Metabolism.
2010; doi:10.1016/j.metabol.2010.06.007.
27. Dal U, Erdogan T, Resitoglu B, Beydagi H. Determination of
preferred walking speed on treadmill may lead to high oxygen
cost on treadmill walking. Gait Posture. 2010;31:366-9.
28. Romijn JA, Coyle EF, Sidossis LS, Rosenblatt J, Wolfe RR.
Substrate metabolism during different exercise intensities in
endurance-trained women. J Appl Physiol. 2000;88:1707-14.
29. Chenevière X, Malatesta D, Gojanovic B, Borrani F. Differences
in whole-body fat oxidation kinetics between cycling and
running. Eur J Appl Physiol. 2010;109:1037-45.
30. Willis WT, Ganley KJ, Herman RM. Fuel oxidation during human
walking. Metabolism. 2005;54:793-9.
31. Hall C, Figueroa A, Fernhall B, Kanaley JA. Energy expenditure
of walking and running: comparison with prediction equations.
Med Sci Sports Exerc. 2004;36:2128-34.
32. Stevenson EJ, Williams C, Mash LE, Phillips B, Nute ML.
Influence of high-carbohydrate mixed meals with different
glycemic indexes on substrate utilization during subsequent
exercise in women. Am J Clin Nutr. 2006;84:354-60.
33. Long W 3rd, Wells K, Englert V, Schmidt S, Hickey MS, Melby
CL. Does prior acute exercise affect postexercise substrate
oxidation in response to a high carbohydrate meal? Nutr Metab
(Lond). 2008;5:2.
34. Jeukendrup AE, Wallis GA. Measurement of substrate oxidation
during exercise by means of gas exchange measurements. Int
J Sports Med. 2005;26:S28-37.

Thank you for copying data from http://www.arastirmax.com