Buradasınız

SiO2 MATRİS İÇERİSİNE İYON EKME YÖNTEMİYLE YERLEŞTİRİLMİŞ Si VE Ge NANOKRİSTALLERİNİN YAPISAL VE OPTİKSEL ÖZELLİKLERİ

STRUCTURAL AND OPTICAL PROPERTIES OF Si AND Ge NANOCRYSTALS EMBEDDED IN SiO2 MATRIX BY ION IMPLANTATION

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
It has been recently established that upon annealing at high temperatures impurity atoms implanted into SiO2 matrix precipitate and form crystal islands with nanometer size. These nanostructures are expected to have interesting electrical and optical properties which can be utilized in the production of new opto- and micro-electronic devices. In this work, properties of Ge and Si nanocrystals formed in SiO2 matrix by ion implantation followed by an annealing process were studied extensively. The formation of Ge nanocrystals was identified by Raman spectroscopy and Transmission Electron Microscopy. Ge islands with well defined spherical shapes were seen by the Transmission Electron Microscopy. The effects of process conditions such as the annealing time and temperature were studied. Evolution of Ge nanocrystal formation was clearly monitored and modeled by Raman sprectroscopy. Fourier Transform Infrared spectroscopy was employed to observe the structural variations in the SiO2 matrix during the formation of both Si and Ge nanocrystals. Si nanocrystals were studied by Photoluminescence. Two broad emission bands in the yellow-orange and near-infrared regions of the light spectrum were recorded. The intensity of these bands depends on the duration and the temperature of the annealing process. These bands are attributed to transitions in defects or chain like Si formations and nanocrystals, respectively.
Abstract (Original Language): 
Son yıllarda, SiO2 matris içerisine ekilmiş katkı atomları yüksek sıcaklıklarda fırınlandıklarında nanometre boyutunda kristal adacıklar oluşturdukları gösterilmiştir. Bu nanoyapıların ilgi çekici elektrik ve optik özelliklere sahip olması beklenmektedir ve böylece bu yapılar opto- ve mikro-elektronik aygıt yapımında değerlendirilebileceklerdir. Bu çalışmada, SiO2 matris içinde iyon ekme ve takiben fırınlama yöntemiyle oluşturulan Ge ve Si nanokristallerinin özellikleri geniş çaplı çalışılmıştır. Ge nanokristallerinin oluşumu Raman spektroskopisi ve Geçirgenli Elektron Mikroskobu (TEM) yöntemleriyle çalışılmıştır. Ge adacıkları ve onların belirgin küresel şekilleri TEM yöntemiyle gözlenmiştir. Fırınlama süresi ve sıcaklığı gibi üretim koşullarının etkileri çalışılmıştır. Ge nanokristallerinin oluşum aşaması Raman spektroskopisi kullanılarak açık bir şekilde görüntülenmiş ve modellenmiştir. Si ve Ge nanokristallerinin oluşum aşamasında, SiO2 matrisin yapısal değişmeleri FTIR spektroskopisiyle incelenmiştir. Si nanokristalleri fotoluminesans yöntemiyle çalışılmıştır. Sarı-turuncu ve yakınkızılötesi bölgelerinde iki genişışıma tepesi kayıt edilmiştir. Bu tepelerin şiddetlerinin fırınlama süresi ve sıcaklığına bağlı olduğu gösterilmiştir. Bu tepelerden birincisi kusurlara veya zincir benzeri Si oluşumlarına, ikincisi ise nanokristallere atfedilmiştir.
FULL TEXT (PDF): 
1-12

REFERENCES

References: 

[1] Masuda., K, Yamamoto, M., Kanaya M., Kanemitsu, Y., (2002), “Fabrication of Ge
nanocrystals in SiO2
films by ion implantation: control of size and position”, J. NonCrystalline. Solids, Vol. 299-302, pp 1079-1083.
[2] Kanemitsu, Y., Uto, H., Masumoto, Y., Maeda, Y., (1992), “On the origin of visible
photoluminescence in nanometer-size Ge crystallites”, Appl. Phys. Lett., Vol. 61, No. 18,
pp 2187-2189.
[3] Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, K., Masumoto, Y., (1992), “Visible
photoluminescence of Ge microcrystals embedded in SiO2
glassy matrices”, Appl. Phys.
Lett., Vol. 59, No. 24, pp 3168-3170.
[4] Shcheglov, K. V., Yang, C. M., Vahala K. J., Atwater H. A., (1995),
“Electroluminescence and photoluminescence of Ge-implanted Si/SiO2
/Si structures”,
Appl. Phys. Lett., Vol. 66, pp 745-747.
[5] King, Y. C., King, T. J., and Hu, C., (2001), "Charge-trap memory device fabricated by
oxidation of Si1-xGex
", IEEE Trans. Electron. Devices, Vol. 48, No. 4, pp 696-700.
[6] Shimizu-Iwayama, T., Ohshima, M., Niimi, T. et al., (1993), “Visible photoluminescence
related to Si precipitates in Si+
-implanted SiO2
”, J. Phys.: Condens. Matter, Vol. 5, No.
31, pp L375-380.
[7] Nogami, M., Abe, Y., (1994), “Sol-gel method for synthesizing visible photoluminescent
nanosized Ge-crystal-doped silica glasses”, Appl. Phys. Lett., Vol. 65, No. 20, pp 2545-
2547.
[8] Craciun, V., Boulmer-Leborgne, C., Nicholls, E. J., Boyd, I. W., (1996), “Light emission
from germanium nanoparticles formed by ultraviolet assisted oxidation of silicongermanium”, Appl. Phys. Lett., Vol. 69, No. 11, pp 1506-1508.
[9] Paine, D. C., Caragianis, C., Kim, T. Y., Shigesato, Y., Ishahara, T., (1993), “Visible
photoluminescence from nanocrystalline Ge formed by H2
reduction of Si0.6Ge0.4O2
”,
Appl. Phys. Lett., Vol. 62, No. 22, pp 2842-2844.
[10] Hayashi, R., Yamamoto, M., Tsunetomo, K., Kohno, K., Osaka, Y., Nasu, H., (1990),
”Preparation and Properties of Ge Microcrystals Embedded in SiO2
Glass Films”, Jpn. J.
Appl. Phys., Vol. 29, No. 4, pp 756-759.
[11] Marstein, E. S., Gunnæs, A. E., Serincan, U., Turan, R., Olsen, A., and Finstad, T. G.,
(2002), “Nanocrystal and nanocluster formation and oxidation in annealed Ge-implanted
SiO2 films”, Surf. Coatings Technol., Vol. 158, pp 544-547.
[12] Marstein, E. S., Gunnæs, A. E., Serincan, U., Jørgensen, S., Turan, R., Olsen, A., and
Finstad, T. G., (2003), “Mechanisms of void formation in Ge implanted SiO2
films”,
Nucl. Instr. and Meth. B, Vol. 207, No.4, pp 424-433.
[13] Marstein, E. S., Gunnæs, A. E., Turan, R., Olsen, A., Finstad, T. G. , and Serincan, U.,
“Introduction of interface states by Ge accumulation at the Si-SiO2 interface by annealing
Ge implanted SiO2
films”, J. Appl. Phys., (at press).
[14] Serincan, U., Aygun, G. and Turan, R., “Selective Excitation and Depth Profiling of Light
Emitting Centers in Si Implanted SiO2”, submitted to J. Lumin.
[15] Verhoeven, J. D., (1975), Fundamentals of Physical Metallurgy, John Wiley & Sons, Inc.,
p. 400.
[16] Czachor, A., (1985), “Locator study of neutron and light inelastic scattering and infrared
absorption in disordered solids”, Phys. Rev. B, Vol. 32, No. 9, pp 5628-5631.
[17] Bermejo, D. and Cardona, M., (1979), “Raman scattering in pure and hydrogenated
amorphous germanium and silicon”, J. Non-Cryst. Solids, Vol. 32, No. 1-3, pp 405-419.
[18] Fujii, M., Hayashi, S., and Yamamoto, K., (1990), “Raman scattering from quantum dots
of Ge embedded in SiO2
thin films”, Appl. Phys. Lett., Vol. 57, No. 25, pp 2692-2694;
Fujii, M., Hayashi, S., and Yamamoto, K., (1991), ” Growth of Ge Microcrystals in SiO2
Thin Film Matrices: A Raman and Electron Microscopic Study”, Jpn. J. Appl. Phys., Vol.
30, No. 4, pp 687-694.
[19] Serincan, U., Kartopu, G., Guennes, A. E., Finstad, T. G., Turan, R., Ekinci, Y., and
Bayliss, S. C., (2004), ” Characterization of Ge nanocrystals embedded in SiO2
by Raman
spectroscopy”, Semicond. Sci. Technol., Vol. 19, No. 2, pp 247-251.
[20] Tsu, D. V., Lucovsky, G. and Davidson B. N., (1989), “Effects of the nearest neighbors
and the alloy matrix on SiH stretching vibrations in the amorphous SiOr
:H (0

Thank you for copying data from http://www.arastirmax.com