Buradasınız

1,10-FENANTROLİNDEN ELDE EDİLEN İMİDAZOL VE SCHIFF BAZI LİGANDLARININ FLORESANS ÖZELLİKLERİNİN İNCELENMESİ

EXAMINATION OF FLUORESCENCE PROPERTIES OF IMIDAZOLE AND SCHIFF BASE LIGANDS DERIVED FROM 1,10-PHENANTHROLINE

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Time Resolved Emission Spectra (TRES) of newly synthesized a Schiff base and an imidazole ligands both derived from 1,10-phenantroline were obtained with PTI Time Master C71 model spectrofluorometer and were calculated their fluorescence lifetimes. Optimum solvent and concentration in which the fluorescence properties of each ligands were observed the best were determined. Ethanol, methanol, dimethylsulfoxide (DMSO) and chloroform were used as solvents. As a result of several experimenrts optimum fluorescence emissions of the ligands were obtained in DMSO and chloroform, It was found that the optimum interval of concentration was between 1.10-4 M and 1.10-5 M. The fluorometric data showed that the ligands could be used for determination of markable quantities of the ions, Ni2+, Cu2+ and Co2+ .
Abstract (Original Language): 
Sentezlenen 1,10-fenantrolin türevi olan Schiff bazı ve imidazol ligandlarının PTI-Time Master C71 model spektroflorometre ile zaman ayrımlı emisyon spektrumları [Time Resolved Emission Spectra (TRES)] alındı ve floresans ömürleri (fluorescence lifetime) hesaplandı. Herbir ligandın floresans özelliklerinin en iyi gözlendiği çözücü ve konsantrasyon tesbit edildi. Çözücü olarak etanol, metanol, DMSO ve kloroform kullanıldı. Yapılan çalışmalar sonucunda ligandların optimum floresans emisyonları DMSO ve kloroformda elde edildi. En uygun konsantrasyon aralığının 1.10-4 M-1.10-5 M olduğu belirlendi. Florometrik veriler bu ligandların Ni2+, Cu2+ ve Co2+ iyonlarının eser miktarlarının tayininde kullanılabilir olduğunu göstermektedir.
99-106

REFERENCES

References: 

[1] Amouyal, E., Hamsi, A., Chambron, J.C. ve Sauvage, J.P., (1990), “Synthesis and Study
of a Mixed-Ligand Ruthenium(II) Complex in Its Ground and Excited States: Bis(2,2'-
bipyridine)(dipyrido[3,2-a:2',3'-c]phenazine-N4
N
5
)ruthenium(II)”, J. Chem. Soc. Dalt.
Trans., 1841-1845.
[2] Bolger, J., Gourdon, A., Ishow, E. and Launay, J.P., (1996), “Mononuclear and Binuclear
Tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz) Ruthenium and Osmium
Complexes”, Inorganic Chemistry, 35: 2937-2944.
[3] Camren, H., Chang, M.Y., Zeng, L.,Mc Guıre, M.E., (1996), “Synthesis of Novel
Substıtued 1,10-Phenanthrolines”, Synth. Commun., 26(6): 1247-1252.
[4] Timothy, M.H., Joyce, C.L., Martin, B. and Subva, R., (1982), “Some Bis(crown) Schiff
Bases which form Pocket Complexes with Alkali-metal Cations of Appropriate Size”, J.
Chem. Soc. Dalton Trans., 2331-2336.
[5] Wenwu, Q., Yanling, Z., Weisheng, L. and Minyu, T., (2003), “Synthesis and Infrared
and Fluorescence Spectral Properties of Luminescent Terbium and Europium Complexes with Open-chain Carboxylate Crown Ethers”, Spectrochimica Acta Part A, 59: 3085-
3092.
[6] Chao, H., Ye, B.H., Zhang, Q.L. and Ji, L.N.,(1999), “A Luminescent pH Sensor Based
on a Diruthenium(II) Complex: ‘off-on-off’ Switching Via The
Protonation/Deprotonation of an Imidazole-Containing Ligand”, 2: 338-340.
[7] Chao, H., Ye, B.H., Li, H., Li, R.H., Zhou, J.Y. and Ji, L.N., (2000), “Synthesis,
Electrochemical and Spectroscopic Properties of Ruthenium(II) Complexes Containing
1,3-bis([1,10]phenanthroline-[5,6-d]imidazol-2-yl)benzene”, Polyhedron, 19:1975-1953.
[8] Demirayak, Ş., Benkli, K., Güven, K., (2000), “Synthesis and Antimicrobial Activities Of
Some 3-arylamino-5-[2-substituted-1-imidazol)ethyl]-1,2,4-triazole Derivatives”, Eur. J.
Med. Chem., 35: 1037-1040.
[9] Bouwman, E., Douziech, B., Gutierrez-Soto, L., Beretta, M., Driessen, W.L., Reedijk, J.,
Mendoza-Diaz, G., (2000), “Co (II), Ni (II), and Zn (II) Compounds Of The New
Tridentate Ligand N,N-bis(2-ethyl-5-methyl-imidazol-4-ylmethyl)aminopropane (biap)”,
Inorganic Chimica Acta, 304: 250-259.
[10] Ferrer, E.G., Baro, G.C., Castellano, E.E., Piro, O.E., Williams, P.M., (2004), “Model
Complexes with Naturally Occurring Ligands (Salicylglycine and İmidazol) and The
Biometals and Cobalt”, Journal of Inorganic Biochemistry, 98: 413-421.
[11] Sandbhor, U., Kulkarni, P., Padhye, S., Kundu, G., Mackenzie, G. and Pritchard, R.,
(2004), “Antimelanomal Activity of The Copper(II) Complexes of 1-substituted 5-aminoimidazole Ligands Against B16F10 Mouse melanome Cells” ,Bioorganic and Medicinal
Chemistry Letters, 14:2877-2882.
[12] Soliman, A.A., (2001), “Thermogravimetric and Spectroscopic Studies on Cadmium
Complexes with Two Salicylidene Thiophenol Schiff Bases”, Journal of Thermal
Analysis and Calorimetry, 63: 221-231.
[13] Timothy, M.H., Joyce, C.L., Martin, B. and Subva, R., (1982), “Some Bis(crown) Schiff
Bases which form Pocket Complexes with Alkali-metal Cations of Appropriate Size”, J.
Chem. Soc. Dalton Trans., 2331-2336.
[14] Wang, Z.M., Lin, H.K.,Zhu, S.R., Liu, T.F. and Chen, Y.T., (2002), “Spectroscopy,
Cytotoxicity and DNA-binding of The Lanthanum(III) Complex of an L-valine Derivative
of 1,10-phenanthroline”, Journal of Biochemistry, 89: 97-106.
[15] Lakowicz, J. R., (1983), “Principles of Fluorescence Spectroscopy” Plenum Press 233
Spring Str. New York NY 10013.
[16] Sharma, A., Schulman S. G., (1999), “Introduction to Fluorescence Spectroscopy” John
WILEY & SONS, INC. NEW YORK.

Thank you for copying data from http://www.arastirmax.com