Buradasınız

FLOQUET TEORİ İLE DOĞRUSAL OLMAYAN SİSTEMLERİN KARARLILIK ANALİZİ

ANALISING OF THE STABILITY OF NONLINEAR SYSTEMS BY USING THE FLOQUET THEORY

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the Floquet theory, which is used for analysing the stability of nonlinear systems, is illustrated using a ship roll model with angle dependent cubic damping, and cubic and quintic stiffness terms. A method for obtaining the periodic solutions is illustrated by using a short time simulation is provided by the correct simulation with the reduced transition states.
Abstract (Original Language): 
Bu çalışmada, doğrusal olmayan sistemlerin kararlılık analizinde kullanılan Floquet teori, açısal olarak kübik söndürücü ve kübik ve beşinci sertlik terimlerine bağımlı örnek bir geminin sallanma modeli üzerinde sunuldu. Periyodik çözümlerin elde edilmesinde doğru simülasyonun yanında azalan geçici hal durumları sayesinde simülasyon süresinin kısaldığı bir metot kullanıldı.
FULL TEXT (PDF): 
21-29

REFERENCES

References: 

[1] Wright, J.H.G., Marshfield, W.B., “Ship Roll Response and Capsize Behaviour in Beam
Seas”, Trans. Royal Inst of Naval Architects, 122, 129-148, 1980.
[2] Cardo, A., Francescutto, A., Nabergoj, R., “Ultraharmonics and Subharmonics in the
Rolling Motion of a Ship: Steady State Solution”, International Shipbuilding Progress,
28, 326, 234-251, 1981.
[3] Nayfeh, A.H., Khdeir, A.A., “Nonlinear Rolling of Ships in Regular Beam Seas”,
International Shipbuilding Progress, 33, 379, 40-49, 1986a.
[4] Nayfeh, A.H., Khdeir, A.A., “Nonlinear Rolling of Biased Ships in Regular Beam
Waves”, International Shipbuilding Progress, 33, 381, 84-93, 1986b.
[5] Peyton Jones, J.C., Çankaya, İ., “Generalized Harmonic Analysis of Nonlinear Ship Roll
Dynamics”, Journal of Ship Research, 40, 4, 39-48, 1996.
[6] Peyton Jones, J.C., Çankaya, İ., “Polyharmonic Balance Analysis of Nonlinear Ship Roll
Response”, Nonlinear Dynamics, 35, 123-146, 2004.
[7] Peyton Jones, J.C., “Automatic Computation of Polyharmonic Balance Equations for
Non-linear Differential Systems”, International Journal of Control, 76, 4, 355-365, 2003.
[8] Fu, Y.M., Zheng, Y.F. and Hou, Z.K., “Analysis of Non-linear Dynamic Stability for
Rotating Shaft-disk with a Transverse Crack”, Journal of Sound and Vibration, 257, 4,
713-731, 2002.
[9] Li, D., Xu, J., “A Method to Determine the Periodic Solution of the Non-linear Dynamics
System”, Journal of Sound and Vibration, 275, 1-16, 2004.
[10] Lukomsky, V.P., Gandzha, I.S., “Cascades of Subharmonics Stationary States in Strongly
Non-linear Driven Planar Systems”, Journal of Sound and Vibration, 275, 351-373, 2004.
[11] Peyton Jones, J.C., Zhuang, M., “Simulation Tool for Nonlinear Frequency Response
Investigations”, Proc ESM’94, Barcelona, Spain, 1994, 136-140.
[12] Çankaya, İ., “Doğru Simülasyon İçin Başlangıç Değerlerinin Seçimi”, Süleyman Demirel
Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7, 3, 87-91, 2003.
[13] Nayfeh, A.H., Mook, D.T., Nonlinear Oscillations, Wiley Interscience, New York, 1979.

Thank you for copying data from http://www.arastirmax.com