Buradasınız

AISI 1040 ÇELİK MALZEMENİN İŞLENMESİNDE YÜZEY KALİTESİ VE TALAŞ AÇISI ARASINDAKİ ETKİLEŞİMİN ARAŞTIRILMASI

INVESTIGATION OF THE INTERACTION BETWEEN THE SURFACE QUALITY AND RAKE ANGLE IN MACHINING OF AISI 1040 STEEL

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In all manufacturing processes, surface quality has a great significance beside dimensional and geometrical tolerances of the products. Performance and strength of machine parts are highly affected by the surface quality. In this research, the effect of the rake angle on surface quality for AISI 1040 steel in turning operations was investigated. For this purpose, eight different rake angles varying from negative to positive and five different cutting speeds were used in the experiments. Depth of cut and feed rate were kept constant throughout the experiments. The results showed that negative rake angle resulted in poor surface quality. Improvement in surface quality continued when the rake angle increasing in positive direction up to a certain limit (10°) after which no further improvement was determined. Moreover, the analysis of variance was used based on factorial design of experiment to evaluate effectiveness of the rake angle and cutting speed in the medium machining. Statistical analysis results showed that the rake angle is the dominant parameter associated with the surface roughness.
Abstract (Original Language): 
Bütün imalat yöntemlerinde ürünlerin ölçü ve geometrik toleranslarının yanında yüzey kalitesi büyük bir öneme sahiptir. Makine parçalarının performansı ve mekanik ömrü büyük oranda yüzey kalitesinden etkilenmektedir. Bu çalışmada, tornalama işleminde AISI 1040 çeliği kullanılarak kesici takım talaş açısının yüzey pürüzlülüğü üzerindeki etkileri incelenmiştir. Bu amaçla, deneylerde negatiften pozitife değişen sekiz farklı talaş açısı ve beş farklı kesme hızı kullanılmıştır. Deneylerde kesme derinliği ve ilerleme sabit tutulmuştur. Yapılan deneyler sonucunda negatif talaş açısının yüzey pürüzlülüğü üzerinde olumsuz bir etkiye sahip olduğu görülmüştür. Pozitif talaş açılarında 10°’ye kadar yüzey kalitesinde bir iyileşme olurken, talaş açısının artırılması ile birlikte yüzey kalitesindeki iyileşmenin önemli olmadığı belirlenmiştir. Ayrıca, faktöriyel deney tasarımına bağlı olarak talaş açısı ve kesme hızının orta işleme şartlarındaki etkinliğini değerlendirmek için varyans analizi yapılmıştır. İstatistiksel analiz sonucunda, talaş açısının yüzey pürüzlülüğü üzerinde daha etkin bir parametre olduğu görülmüştür.
105-111

REFERENCES

References: 

[1] Stephenson, D.A., Agapiou, J.S., “Metal Cutting Theory and Practice”, 2nd edition,
Taylor & Francis, CRC Press, Boca Raton, 2006.
[2] Kopac, J., Bahor, M., “Interaction of the technological history of a workpiece material
and the machining parameters on the desired quality of the surface roughness of a
product”, Journal of Materials Processing Technology, 92-93, 381-387, 1999.
[3] Arbizu, I. P., Perez, L.C.J., “Surface roughness prediction by factorial design of
experiments in turning processes”, Journal of Materials Processing Technology, 143–144,
390–396, 2003.
[4] Thomas, M., Beauchamp Y., “Statistical investigation of modal parameters of cutting
tools in dry turning”, International Journal of Machine Tools & Manufacture, 43, 1093–
1106, 2003.
[5] Bayrak, M., “The effect of cutting parameters on surface roughness and comparison with
an expert system”, MSc Thesis, Gazi University Institute of Science and Technology,
Ankara, 2002.
[6] Özses, B., “Different cutting conditions effect on surface roughness in computer
numerical controlled machine tools”, MSc Thesis, Gazi University Institute of Science
and Technology, Ankara, 2002.
[7] Lin, W.S., Lee, B.Y., “Modelling the surface roughness and cutting forces during
turning”, Journal of Materials Processing Technology, 108, 286-293, 2001.
[8] Risbood, K.A., Dixit, U.S., “Prediction of surface roughness and dimensional deviation
by measuring cutting forces and vibration in turning process”, Journal of Materials
Processing Technology, 132, 203-214, 2003.
[9] Petropoulos, G.A., Torrance, A., Pandazaras, C.N., “Abbott curves characteristics of
turned surfaces”, International Journal of Machine Tools & Manufacture, 43, 237-243,
2003.
[10] Sekuliç, S., “Correlation between the maximal roughness height and mean arithmetic
deviation of the profile from the mean line of machined surface in finish turning”,
International Conference on Tribology, Kayseri, Turkey, 2002.
[11] Gadelmavla, E.S., Koura, M. M., “Roughness parameter”, Journal of Materials Processing
Technology, 123, 133-145, 2002.
[12] Davim, J. P., Figueira, L., “Machinability evaluation in hard turning of cold work tool
steel (D2) with ceramic tools using statistical techniques”, Materials and Design, 28,
1186–1191, 2007.
[13] Abouelatta, O.B., Madl, J., “Surface roughness prediction based on cutting parameters
and tool vibrations in turning operations”, Journal of Materials Processing Technology,
118, 269-277, 2001.
[14] Trent, E. M., “Metal Cutting”, Butterworths, London, 1984, 183-201.
[15] Taguchi, G., “Taguchi on robust technology development methods”, ASME Press, New
York, 1993, 1–40.
[16] Choudhury, I.A., EI-Baradie, M.A., Surface roughness prediction in the turning of highstrength steel by factorial design of experiments Journal of Materials Processing
Technology 67, 55-61, 1997.
[17] Dabnun, M.A., Hashmi, M.S.J., El-Baradie, M.A., “Surface roughness prediction model
by design of experiments for turning machinable glass–ceramic”, Journal of Materials
Processing Technology 164–165, 1289–1293, 2005.
[18] Günay, M., Aslan E., Korkut, İ., Şeker, U., “Investigation of the effect of rake angle on
main cutting force”, International Journal of Machine Tools & Manufacture, 44, 953–959,
2004.
[19] ISO 4287:1997, Geometrical Product Specifications (GPS)-Surface Texture: Profile
Method—Terms, Definitions and Surface Texture Parameters, International Organisation
for Standardisation, Geneva, 1997.
[20] Shaw, M. C., “Metal Cutting Principles”, Oxford University Press, London, 1984, 19-46.

Thank you for copying data from http://www.arastirmax.com