Buradasınız

ALTIN NANOPARÇACIKLARIN CANLI HÜCRELERLE ETKİLEŞİMİ

INTERACTION OF GOLD NANOPARTICLES WITH LIVING CELLS

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
The interaction of nanoparticles with living systems is under intense investigations due to their increasing use. The unknown effects on human health and vague understanding of their interactions with living systems are the fundamental issues before their use in products consumed by humans. The gold nanoparticles (GNPs) are mostly assumed safe and their use is considered in applications such as drug and gene delivery, photothermal therapy to selectively kill the cancerous cells, and nanoprobes for cellular investigations. This review provides the recent developments in the use of GNPs in medicine and their interactions with living cells along with the basic concepts and techniques used to monitor the interactions such as surface-enhanced Raman scattering (SERS).
Abstract (Original Language): 
Nanoparçacıklar, canlı sistemlerde kullanımlarının artması nedeniyle günümüzde oldukça yoğun bir araştırma konusu olmuştur. Fakat nanomateryallerin insanlar tarafından kullanılan tüketim ürünlerinde kullanılmadan önce insan sağlığı üzerinde bilinmeyen etkilerinin olması ve canlı sistemlerle olan ilişkilerinin de tam olarak anlaşılamaması, karşılaşılan ve araştırılması gereken en önemli sorunlar arasındadır. Oysa en yaygın kullanılan nanoparçacıklardan biri olan altın nanoparçacıkların ilaç salınımında, gen aktarımında, kanser hücrelerini öldürme yöntemlerinden biri olan fototermal terapide ve hücresel araştırmalar için nano-probe hazırlanması gibi uygulamalarda kullanımının güvenli olduğu düşünülmektedir. Bu derleme, altın nanoparçacıkların tıptaki ve canlı hücrelerle olan ilişkilerindeki son gelişmeleri ve bu ilişkileri incelemekte kullanılan Yüzeyce Zenginleştirilmiş Raman Saçılması (YZRS) gibi tekniklerle birlikte bu alandaki temel konuları ele almaktadır.
227-246

REFERENCES

References: 

[1] Jain K. K., “Nanotechnology in clinical laboratory diagnostics”, Clinica Chimica Acta,
358, 1-2, 37–54, 2005.
[2] Chithrani B. D., Ghazani A. A., Chan W. C. W., “Determining the Size and Shape
Dependence of Gold Nanoparticle Uptake into Mammalian Cells”, Nano Letters, 6, 4,
662-668, 2006.
[3] Dong S., Yang S., Tang C., “Rapid Synthesis of Size-controlled Gold Nanoparticles by
Complex Intramolecular Photoreduction”, Chem. Res. Chinese U., 23, 5, 500-504, 2007.
[4] Dong S., Zhou S., “Photochemical synthesis of colloidal gold nanoparticles”, Materials
Science and Engineering B, 140, 3, 153-159, 2007.
[5] Kerker M., “The optics of colloidal silver: something old and something new”, J. Colloid
and Interface Sci., 105, 2, 297-314, 1985.
[6] Maier S. A., “Plasmonics: Fundamentals and Applications”, Springer, New York, 2007.
[7] Dragoman M., Dragoman D., “Plasmonics: Applications to nanoscale terahertz and
optical devices”, Progress in Quantum Electronics, 32, 1, 1-41, 2008.
[8] Willets K. A., Van Duyne R. P., “Localized Surface Plasmon Resonance Spectroscopy
and Sensing”, Annu. Rev. Phys. Chem., 58, 267-297, 2007.
[9] Kreibig U., Vollmer M., “Optical Properties of Metal Clusters”, Springer, Berlin, 1995.
[10] Bohren C. F., Huffman D. R., “Absorption and Scattering of Light by Small Particles”,
Wiley, New York, 1983.
[11] Mie G., “Contributions to the Optics of Turbid Media, Especially Colloidal Metal
Solutions”, Ann. Phys. 25, 377-445, 1908.
[12] Lazarides A. A., Kelly K.L., Jensen T. R. and Schat G.C. “Optical properties of metal
nanoparticles and nanoparticle aggregates important in biosensors” Journal of Molecular
Structure: THEOCHEM, 529, 1-3, 59-63, 2000.
[13] Kelly K. L., Coronado E., Zhao L. L. et.al., “Optical Properties of Metal Nanoparticles:
The Influence of Size, Shape, and Dielectric Environment”, J. Phys. Chem. B, 107, 3,
668-667, 2003.
[14] Barber P. W., Hill S. C., “Light Scattering by Particles: Computational Methods”, 1, 2,
World Scientific Publishing, Singapore, 1990.
[15] Yang W. H., Schatz G. C., Van Duyne R. P., “Discrete dipole approximation for
calculating extinction and Raman intensities for small particles with arbitrary shapes”, J.
Chem. Phys. 103, 3, 869-875, 1995.
[16] Sosa I. O., Noguez C., Barrera R. G., “Optical properties of metal nanoparticles with
arbitrary shapes”, J. Phys. Chem. B, 107, 26, 6269-6275, 2003.
[17] Shlager K. L., Schneider J. B., “A Selective Survey of the Finite-Difference TimeDomain Literature”, IEEE Antenn. Propag. Mag. 37, 4, 39-56, 1995.
[18] Gray S. K., Kupta T.,” The propagation of light in metallic nanowire arrays: Finitedifference time-domain studies of silver cylinders”, Phys. ReV. B, 68, 045415, 1-10,
2003.
[19] Link S., El-Sayed M. A., “Spectral Properties and Relaxation Dynamics of Surface
Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods”, J. Phys.
Chem. B, 103, 40, 8410-8426, 1999.
[20] Maier S. A., Brongersma M. L., Kik P. G., et.al., “Observation of near-field coupling in
metal nanoparticle chains using far-field polarization spectroscopy”, Phys. ReV. B, 65,
193408, 1-4, 2002.
[21] Maier S.A., Kik P.G. and Atwater H.A., “Observation of coupled plasmon-polariton
modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide
loss”, Appl. Phys. Lett., 81, 9, 1714-1716, 2002.
[22] Lamprecht B., Schider G., Lechner R. T. et.al., “Metal Nanoparticle Gratings: Influence
of Dipolar Particle Interaction on the Plasmon Resonance”, Phys. Rev. Lett., 84, 20, 4721-
23, 2000.
[23] Li X., Jiang L., Qian J. et.al., “Localized surface plasmon resonance (LSPR) of
polyelectrolyte-functionalized gold-nanoparticles for bio-sensing”, Colloids and Surfaces
A: Physicochemical and Engineering Aspects, 332, 2-3, 172-179, 2009.
[24] Ahn W., Roper D.K., “Transformed gold island film improves light-to-heat transduction
of nanoparticles on silica capillaries”, Journal of Physical Chemistry, 112, 32, 12214-
12218, 2008.
[25] Shin Y.B., Lee J.M., Park M.R., et al., “Analysis of recombinant protein expression using
localized surface plasmon resonance (LSPR)”, Biosensors & Bioelectronics, 22, 9-10,
2301-2307, 2007.
[26] Kim K., Yoon S.J., Kim D., “Nanowire-based enhancement of localized surface plasmon
resonance for highly sensitive detection: a theoretical study”, Optics Express, 14, 25,
12419-12431, 2006.
[27] Lin T.J., Huang K.T., Liu C.Y., “Determination of organophosphorous pesticides by a
novel biosensor based on localized surface plasmon resonance”, Biosensors &
Bioelectronics, 22, 4, 513-518, 2006.
[28] Teichroeb J.H., Forrest J.A., Ngai V, et al., “Anomalous thermal denaturing of proteins
adsorbed to nanoparticles”, European Physical Journal E., 21, 1, 19-24, 2006.
[29] Whitney A.V., Casadio F., Van Duyne R.P., “Identification and characterization of artists'
red dyes and their mixtures by surface-enhanced Raman spectroscopy”, Applied
Spectroscopy, 61, 9, 994-1000, 2007.
[30] Pieczonka N.P.W., Aroca R.F., “Single molecule analysis by surfaced-enhanced Raman
scattering”, Chemical Society Reviews, 37, 5, 946-954, 2008.
[31] Zhang X., Shah N.C., Van Duyne R.P., “Sensitive and selective chem/bio sensing based
on surface-enhanced Raman spectroscopy (SERS)”, Vibrational Spectroscopy, 42, 1, 2-8,
2006.
[32] Grabar K.C., Freeman R.G., Hommer M.B., Natan M.J., “Preparation and characterization
of Au colloid monolayers”, Anal. Chem., 67, 4, 735–743, 1995.
[33] Frens G., “Controlled nucleation for the regulation of the particle size in monodisperse
gold suspensions”, Nature Phys. Sci., 241, 105, 20–22, 1973.
[34] Turkevich J., Stevenson P.C., Hillier J., “A study of the nucleation and growth processes
in the synthesis of colloidal gold”, Faraday Soc., 11, 55–75, 1951.
[35] Yu Y-Y., Chang S.S., Lee C.L., et al., “Gold nanorods: electrochemical synthesis and
optical properties”,J. Phys. Chem., 101, 34, 6661-6664, 1997.
[36] Huff B.T., Hansen, N.M., Zhao Y., et al., “Controlling the Cellular Uptake of Gold
Nanorods”, Langmuir., 23, 4, 1596-1599, 2007.
[37] Yang J., Zeng J., Kong T., et al., “The effect of surface properties of gold nanoparticles on
cellular uptake”,IEEE, 1, 4244, 92-95, 2008.
[38] Davda J., Labhasetwar V., “Characterization of nanoparticle uptake by endothelial cells”,
Int J. Pharm., 233, 1-2, 51-59, 2002.
[39] Pernodet N., Fang X., Sun Y., et al., “Adverse effects of citrate/gold nanoparticles on
human dermal fibroblasts”, Small, 2, 6, 766-773, 2006.
[40] Yi H., Leunissen J., Shi G., et al., “A novel procedure for pre-embedding double
immunogold-silver labeling at the ultrastructural level”, J. Histochem. Cytochem., 49, 3,
279-283, 2001.
[41] Goodman C.M., McCusker C.D., Yilmaz T., et al., “Toxicity of Gold Nanoparticles
Functionalized with Cationic and Anionic Side Chains”, Bioconjugate Chemistry, 15, 4,
897-900, 2004.
[42] Connor E., Mwamuka J., Gole A., et al., “Gold Nanoparticles Are Taken Up by Human
Cells but Do Not Cause Acute Cytotoxicity”, Small, 1, 3, 325–327, 2005.
[43] Niidome T., Yamagata, M., Okamoto Y., et al., “PEG-Modified Gold Nanorods with a
Stealth Character for in Vivo Applications”, J. Controlled Release, 114, 3, 343-347, 2006.
[44] Takahashi H., Niidome Y., Niidome T., et al., “Modification of Gold Nanorods Using
Phosphatidylcholine to Reduce Cytotoxicity”, Langmuir, 22, 1, 2-52, 2006.
[45] Liu Y., Meyer-Zaika W., Franzka S., et al., “Gold-Cluster Degradation by the Transition
of B-DNA into A-DNA and the Formation of Nanowires”, Angew. Chem. Int. Ed, 42,
25, 2853-2857, Angew. Chem., 115, 25, 2959-2963, 2003.
[46] Shukla R., Bansal V., Chaudhary M., et al., “Biocompatibility of Gold Nanoparticles and
Their Endocytotic Fate inside the Cellular Compartment: A Microscopic Overview”,
Langmuir, 21, 23, 10644-10654, 2005.
[47] Pan Y., Neuss S., Leifert A., “Size-Dependent Cytotoxicity of Gold Nanoparticles”,
Small, 3, 11, 1941-1949, 2007.
[48] Hirsch L.R., Stafford R.J., Bankson J.A., et al., “Nanoshell-Mediated Near-Infrared
Thermal Therapy of Tumors under Magnetic Resonance Guidance”, PNAS, 100, 23,
13549–13554, 2003.
[49] Loo C., Lin A., Hirsch L., et al., “Nanoshell-enabled photonics-based imaging and
therapy of cancer”, Technol. Cancer Res. Treat., 3, 1, 33–40, 2004.
[50] Loo C., Lowery A., Halas N., et al., “Immunotargeted Nanoshells for Integrated Cancer
Imaging and Therapy”, Nano Lett., 5, 4, 709–711, 2005.
[51] Su H.C., Sheu S.H., Lin Y.C., et al., “Nanoshell Magnetic Resonance Imaging Contrast
Agents”, J. Am. Chem. Soc., 129, 7, 2139–2146, 2007.
[52] Takahashi H., Niidome T., Nariai A., et al., “Photothermal reshaping of gold nanorods
prevents further cell death”, Nanotechnology, 17, 4431–4435, 2006.
[53] Thomas M., Klibanov A., “Conjugation to Gold Nanoparticles Enhances
Polyethylenimine’s Transfer of Plasmid DNA into Mammalian Cells”, PNAS, 100, 16,
9138–9143, 2003.
[54] Tkachenko A., Xie H., Liu Y., et al., “Cellular Trajectories of Peptide-Modified Gold
Particle Complexes: Comparison of Nuclear Localization Signals and Peptide
Transduction Domains”, Bioconjugate Chem., 15, 3, 482–490, 2004.
[55] Patra H.K., Banerjee S., Chaudhuri U., et al., “Cell-Selective Response to Gold
Nanoparticles”, Nanomedicine, 3, 111–119, 2007.
[56] Giljohann D.A. , Seferos D. S., et al., “Oligonucleotide Loading Determines Cellular
Uptake of DNA-Modified Gold Nanoparticles”, Nano Lett., 7, 12, 3818–3821, 2007.
[57] Gang Han, Nandini S. Chari, Ayush Verma et al., “Controlled Recovery of the
Transcription of Nanoparticle-Bound DNA by Intracellular Concentrations of
Glutathione”, Bioconjugate Chem., 16, 1356, 2005.
[58] Anderson M.E, “Glutathione: an overview of biosynthesis and modulation”, Chem.-Biol.
Interact., 112, 1–14, 1998.
[59] Sies H., “Glutathione and its role in cellular functions”, Free Radic. Biol. Med., 27, 9-10,
916–921, 1999.
[60] Jones D. P., Carlson J.L., Mody V.C., Cai J.Y., Lynn M.J., Sternberg P., “Redox state of
glutathione in human plasma”, Free Radic. Biol. Med., 28, 4, 625–635, 2000.
[61] Tkachenko A. G., Xie H., Coleman D. et al., “Multifunctional Gold Nanoparticle-Peptide
Complexes for Nuclear Targeting”, J. Am. Chem. Soc., 125, 16, 4700–4701, 2003.
[62] Sun L., Liu D., Wang Z., “Functional Gold Nanoparticle−Peptide Complexes as CellTargeting Agents”, Langmuir, 24, 18, 10293–10297, 2008.
[63] Pissuwan D., Cortie C.H., Valenzuela S.M., Cortie M.B., “Gold Nanosphere-Antibody
Conjugates for Hyperthermal Therapeutic Applications”, Gold Bulletin, 40, 2, 121-129,
2007.
[64] Dixit V. , Van den Bossche J., Sherman D.M., Thompson D.H., Andres R.P., “Synthesis
and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective
targeting of folate receptor-positive tumor cells” Bioconjug. Chem., 17, 3, 603–609,
2006.
[65] Lee H., Lee K., Kim K., Park T.G., “Synthesis, characterization, and in vivo diagnostic
applications of hyaluronic acid immobilized gold nanoprobes”, Biomaterials, 29, 35,
4709-4718, 2008.
[66] Rosi N.L., Giljohann D.A., Thaxton C.S., Lytton-Jean A.K.R., Han M.S., Mirkin C.A.,
“Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation”,
Science, 312, 5776, 1027–1030, 2006.
[67] Partha S. Ghosh, Chae-Kyu Kim et al., “Efficient Gene Delivery Vectors by Tuning the
Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles”, ACS Nano,
2, 11, 2213–2218, 2008.
[68] Oishi M., Nakaogami J., Ishii T., Nagasaki Y., “Smart PEGylated Gold Nanoparticles for
the Cytoplasmic Delivery of siRNA to Induce Enhanced Gene Silencing” Chem. Lett. 9,
35, 1046–1047, 2006.
[69] Nitin N., Javier D. J., Roblyer D. M. and Richards K. R., “Widefield and high-resolution
reflectance imaging of gold and silver nanospheres”, J. Biomed. Opt., 12, 5, 051505,
2007.
[70] El-Sayed M. A., “Some Interesting Properties of Metals Confined in Time and Nanometer
Space of Different Shapes”, Acc. Chem. Res. 34, 4, 257-264, 2001.
[71] Huang X., El-Sayed I. H., Qian W., and El-Sayed M. A., “Cancer Cell Imaging and
Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods”, J. Am.
Chem. Soc., 128, 6, 2115–2120, 2006.
[72] Link S. and El-Sayed M. A., “Optical properties and ultrafast dynamics of metallic
nanocrystals”, Annu. Rev. Phys. Chem., 54, 331-366, 2003.
[73] El-Sayed I.H., Huang X. and M.A. El-Sayed, “Selective laser photo-thermal therapy of
epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles”, Cancer
Lett. 239, 1, 129-135, 2006.
[74] Zharov V. P., Galitovskaya E.N., Johnson C. and Kelly T., “Synergistic enhancement of
selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy”,
Lasers Surg. Med. 37, 3, 219-226, 2005.
[75] Pitsillides C. M., Joe E. K., Wei X., Anderson R. R. and Lin C.P., “Selective cell targeting
with light-absorbing microparticles and nanoparticles” Biophys. J., 84, 4023-4032, 2003.
[76] Huang X., Jain P. K., El-Sayed I.H. and El-Sayed M.A., “Determination of the Minimum
Temperature Required for Selective Photothermal Destruction of Cancer Cells with the
Use of Immunotargeted Gold Nanoparticles”, Photochem. Photobiol. 82, 2, 412-417,
2006.
[77] Kneipp K., Haka S.A., Kneipp H., et al., “Surface-Enhanced Raman Spectroscopy in
Single Living Cells Using Gold Nanoparticles”, Appl. Spectrosc., 56, 150–154, 2, 2002.
[78] Kneipp J., Kneipp H., McLaughlin M. et.al., “In vivo molecular probing of cellular
compartments with gold nanoparticles and nanoaggregates”, Nano Lett. 6, 10, 2225-2231,
2006.
[79] Shamsaie A., Jonczyk M., Sturgis., Robinson P J., et al., “ Intracellularly Grown Gold
Nanoparticles as Potential Surface-Enhanced Raman Scattering Probes”, Journal of
Biomedical Optics., 12, 2, 020502-1, 2007.
[80] Talley C.E., Jusinski L., Hollars C.W., et al., “Intracellular pH sensors based on surfaceenhanced Raman scattering”, Anal. Chem., 76, 23, 7064–7068, 2004.
[81] Kahraman M.,Yazici M.M., Sahin F., et al., “Experimental Parameters Influencing
Surface-Enhanced Raman Scattering of Bacteria”, J. of Biomedical Optics, 12, 5, 054015,
2007.
[82] Kahraman M.,Yazici M.M., Sahin F., et al., “Towards Single Microorganism Detection
using Surface-enhanced Raman Spectroscopy”, International Journal of Environmental
Analytical Chemistry., 87, 10-11, 763-770, 2007.
[83] Kahraman M., Yazici, M.M., Sahin F., et al., “Reproducible Surface-Enhanced Raman
Scattering Spectra of Bacteria on Aggregated Silver Nanoparticles”, Applied
Spectroscopy., 61, 5, 479-485, 2007.
[84] Culha M., Kahraman M., Yazici M.M., et al., “Utilizing Silver and Gold Nanoparticles for
Investigation of Bacterial Cell Wall Biochemical Structure", NSTI Nanotech The
Nanotechnology Conference and Trade Show, Santa Clara Convention Center, Santa
Clara, California, USA, May 2007, 538-541.
[85] Chourpa I., Morjani H., Riou F J., et al., “Intracellular Molecular Interactions of
Antitumor Drug Amsacrine m-AMSA as Revealed by Surface-Enhanced Raman
Spectroscopy”, FEBS Lett., 397, 1, 61–64, 1996.

Thank you for copying data from http://www.arastirmax.com