Buradasınız

BENZEŞİK DİNAMİK DENEY TEKNİĞİ VE BİR UYGULAMASI

PSEUDO DYNAMIC TESTING METHODOLOGY AND ITS AN APPLICATION

Journal Name:

Publication Year:

Abstract (2. Language): 
Pseudo dynamic testing methodology which aims to simulate earthquake behavior of structures or particular structural components subjected to dynamic loads consists of both the analytical and experimental analyses in a coupled interaction. The test specimen is idealized as a spring-mass discrete system, hydraulic actuators are positioned to the lumped mass levels, and the test specimen is deformed up to the target displacement which is extracted from the analytical calculation. The reaction forces measured from the load cells attached to the hydraulic actuators; are the terms of the stiffness matrix of the test specimen. Based on the experimentally obtained stiffness matrix and the prescribed mass and damping matrices, the dynamic equilibrium equation is generated and the displacement vector to be applied to the specimen in the next step is calculated by using a proper numerical integration technique. This process is repeated for the whole seismic event. Due to application of the loading function in a quasi-static manner, local behavior and damage propagation of the test structure could be traced. Within the context of this study, a pseudo-dynamic testing algorithm for single degree of freedom systems was developed and a computer code was produced. In order to verify the developed algorithm, a steel column was tested under different acceleration levels in the linear and non-linear regions and the test results were compared with the analytical ones.
Abstract (Original Language): 
Benzeşik dinamik deney tekniği, yapı sistemlerinin veya yapısal elemanların dinamik karakterli yükler etkisindeki davranışının belirlenmesi için, etkileşimli olarak gerçekleştirilen deneysel ve analitik çözümü içermektedir. İncelenecek sistem yığılı kütleli olarak idealleştirilmekte; yığılı kütle konumlarına hidrolik verenler bağlanarak, numune kuramsal hesapta elde edilen yerdeğiştirme durumuna itilmektedir. Hidrolik verenlere bağlı yük ölçerlerden okunan reaksiyon kuvvetleri deney numunesinin rijitlik matrisinin terimlerine karşı gelmektedir. Deneysel olarak belirlenen rijitlik matrisi ile kuramsal olarak oluşturulan kütle ve sönüm matrisleri kullanılarak, dinamik denge denklemi kurulmakta ve seçilmiş bir sayısal integrasyon tekniği kullanılarak hesabın bir sonraki adımında numuneye etkitilecek yerdeğiştirme vektörü belirlenmektedir. Bu işlem dinamik yükleme fonksiyonu sona erene kadar sürdürülmektedir. Yüklemenin duraklamalı olarak uygulanması sebebiyle numune üzerinde hasar oluşumu ve gelişimi izlenebilmektedir. Bu çalışma kapsamında, tek dinamik serbestlik dereceli sistemler için bir benzeşik dinamik deney algoritması geliştirilmiş ve programlanmıştır. Geliştirilen algoritmanın doğrulaması amacı ile bir çelik kolon farklı genliklerdeki ivme kayıtları etkisinde doğrusal ve doğrusal olmayan bölgelerde denenmiş elde edilen sonuçlar kuramsal sonuçlar ile karşılaştırılmıştır.
286-302

REFERENCES

References: 

[1] Williams, M.S., Blakeborough, A., 2001, “Laboratory Testing of Structures Under
Dynamic Loads: An Introductory Review”, Phil. Trans. R. Soc. Lond. A 359: 1651-1669.
[2] Hakuno, M., Shidawara, M., Hara, T., 1969, “Dynamic Destructive Test of a Cantilever
Beam, Controlled by an Analog-Computer”, Transactions of the Japan Society of Civil
Engineers. 171:1-9.
[3] Takanashi, K., 1975, “Non-linear Earthquake Response Analysis of Structures by a
Computer Actuator on-line System”, Transactions of the Architectural Institute of Japan.
229: 77-83.
[4] Shing, P.B., Nakashima, M., Bursi, O.S.,1996, “Application of Pseudodynamic Test
Method to Structural Research”, Earthquake Spectra, 12(1):29-56.
[5] Mahin, S.A., Shing, P.B., 1985, “Pseudodynamic method for seismic testing”, Journal of
Structural Engineering, 111(7):1482-1503.
[6] Nakashima, M., McCormick, J., Wang, T., 2008, “Hybrid Simulation: A Historical
Perspective”, Hybrid Simulation, Theory, Implementation and Application, Taylor &
Francis Group, London, UK, pp. 3-13.
[7] Takanashi, K., Nakashima, M. 1987, “Japanese Activities on On-Line Testing”, Journal of
Engineering Mechanics”, 113(7):1014-1032.
[8] Takanashi, K., Nakashima, M., 1988, “On-line Computer Test Control Methods and Its
Application to Earthquake Response Simulation of Steel Structural Models”, Journal of
Constructional Steel Research 11:27-40.
[9] Seible, F., Hegemier, G.A., Igarashi, A., Kingsley, G.R., 1994, “Simulated Seismic-Load
Tests on Full Scale Five-storey Masonry Building”, Journal of Structural Engineering,
120(3), 903-924.
[10] Shing, P.B., Bursi, O.S., Vannan, M.T., 1994, “Pseudodynamic Tests of Concentrically
Braced Frame Using Substructuring Techniques”, Journal of Constructional Steel
Research, 29:121-148.
[11] Thewalt, C.R. Mahin, S.A., 1995, “Nonplanar Pseudodynamic Testing”, Earthquake
Engineering and Structural Dynamics, 24: 733-746.
[12] Molina, F.J., Verzeletti, G., Magonette, G., Buchet, P., Geradin, M., 1999, “Bi-directional
Pseudo-Dynamic Test of a Full-Size Three Storey Building”, Earthquake Engineering and
Structural Dynamics, (28):1541-1566.
[13] Pinto, A.V., Verzeletti, G., Molina, J., Varum, H., Pinho, R., Coelho, E., 2002, “PseudoDynamic Tests on Non-Seismic Resisting RC Frames (bare and selective retrofitted
frames)”, ELSA, European Commission Joint Research Centre, Report No. EUR 20244,
EN, Ispra, Italy.
[14] Ceyhan, A., 2008, “Yapısal Elemanların Deprem Etkisindeki Davranışlarının
Belirlenmesinde Benzeşik Dinamik Deney Tekniği Uygulamaları”, Yüksek Lisans Tezi,
İTÜ Fen Bilimleri Enstitüsü.
[15] Tako, E.S. 2009, “Bölme Duvarlı Betonarme Çerçevelerin Deprem Davranışlarının
Belirlenmesinde Statik ve Benzeşik Dinamik Deney Karşılaştırmaları”, Yüksek Lisans
Tezi, İTÜ Fen Bilimleri Enstitüsü.
[16] Magonette, G., 1991, “Digital Control of Pseudo-Dynamic Tests”, Experimental and
Numerical Methods in Earthquake Engineering, Donea J, Jones PM (eds), Kluwer:
Dordrecht, The Netherlands, 63-69.
[17] Newmark, N.M., 1959, “A Method of Computation for Structural Dynamics”, ASCE
Journal of the Engineering Mechanics, 85(3), 67-94.
[18] Hilber, H.M., Hughes, T.J.R., Tayloe, R.L., 1977, “Improved Numerical Dissipation for
Time Integration Algorithms in Structural Dynamics”, Earthquake Engineering and
Structural Dynamics, 5(3):283-292.
[19] Nakashima, M., Kaminosono, T., Ishida, I., Ando, K, 1990, “Integration Techniques for
Substructure Pseudo Dynamic Test”, Proceedings, Fourth US National Conference on
Earthquake Engineering, Vol.2, EERI, Palm Springs, CA.
[20] Kabayama, K., Toyoshima, M., Kumazawa, F., Nakano, Y., Okada, T., 1993, “On-line
Tests of Frame Structures”, Bulletin of Earthquake Resistant Structure Research Center,
26.
[21] Shing, P.B., Mahin, S.A., 1987a, “Cumulative Experimental Errors in Pseudodynamic
Tests”, Earthquake Engineering and Structural Dynamics, 15(4):409-424.
[22] Yamazaki, Y., Nakashima, M., Kaminosono, T., 1989, “Reliability of Pseudodynamic
Test in Earthquake Response Simulation”, Journalof Structural Engineering, 115, 2098-
2112.
[23] Shing, P.B., Mahin, S.A., 1987b, “Elimination of Spurious Higher Mode Response in
Pseudodynamic Tests”, Earthquake Engineering and Structural Dynamics, 15, 425-445.
[24] Casciati, F., Magonette, G., 1999, “Testing Facilities and Laboratory Validation”, In
Advances in Structural Control, pp. 1-23, Barcelona, CINME.
[25] Nakashima, M., Takai, H., 1985, “Computer-actuator Online Testing Using Substructure
and Mixed Integration Techniques”, Proc. of the 7th Symposium on the Use of Computers
in Building Structures, Architectural Institute of Japan. Tokyo, Japan, 205-210.
[26] Nakashima, M., Masaoka, N., 1999, “Real-time On-line Test for MDOF Systems,
Earthquake Engineering and Structural Dynamics. 28: 393-420.
[27] Tsai, K., 2003, “Network Platform for Structural Experiment and Analysis (I)”, NCREE-
03-021, National Center for Research on Earthquake Engineering, Taiwan.
[28] Pan, P., Tada, M., Nakashima, M., 2005, “Online Hybrid Test by Internet Linkage of
Distributed Test-Analysis Domains”, Earthquake Engineering and Structural Dynamics,
34, 1407-1425.
[29] Takahashi, Y., Fenves, G., 2006, “Software framework for distributed experimental–
computational simulation of structural systems”, Earthquake Engineering and Structural
Dynamics, 35: 267-291.
[30] Reinhorn, A.M., Kunnath, S.K., Valles, R.E., 1994, IDARC2D V6.1, “A Program for the
Inelastic Damage Analysis of Buildings, National Center for Earthquake Engineering
Research, Buffalo, USA.
[31] Chopra, A., 2001, “Dynamics of Structures Theory and Applications to Earthquake
Engineering”, Second Edition, Prentice Hall
[32] PEER Strong Motion Data Base http://www.peer.berkeley.edu/smcat/search.html
[33] TDY, 2007, “Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik”,
Bayındırlık ve İskan Bakanlığı, Ankara.

Thank you for copying data from http://www.arastirmax.com