Buradasınız

REGRESYON ANALİZİNDE KULLANILAN EN KÜÇÜK KARELER VE EN KÜÇÜK MEDYAN KARELER YÖNTEMLERİNİN KARŞILAŞTIRILMASI

THE COMPARISON OF LEAST SQUARES AND LEAST MEDIAN SQUARES ESTIMATION METHODS WHICH ARE USED IN LINEAR REGRESSION ANALYSIS

Journal Name:

Publication Year:

Abstract (2. Language): 
Regression analysis is one of the most commonly used statistical techniques. Out of many possible regression techniques, the Least Squares Method (LSM) has been generally adopted because of tradition and ease of computation. In data analysis and trend modelling applications the least squares (LS) estimator is widely used and LS regression is, in most cases, the method of choice. However, the crucial fact that the LS estimator is very sensitive to outlying observations may lead to unreliable results in the regression estimates and, hence, to a misleading interpretation of the data. To remedy this problem, some statistical techniques have been developed that are not so easily affected by outliers. These are the robust methods, the results of which remain trustworthy even if a certain amount of data is outlier. One of them is the least median squares method which is using in statistical analysis. In this study, estimation of Least Square and Least Median Square has been given. LS and LMS methods are applied and compared on differrent sample that can be produced by simulation study. To find whether there isimportant difference between methods are compared their estimations
Abstract (Original Language): 
İstatistiksel yöntemler içerisinde yer alan regresyon çözümlemesi en çok kullanılan yöntemlerden biridir. Olası birçok regresyon yöntemlerinin dışında, genellikle matematiksel hesaplamalardaki kolaylığından dolayı, En Küçük Kareler yöntemi (EKK) en uygun tahmin yöntemi olarak kullanılmaktadır. Veri analizi ve ekonometri uygulamalarında EKK kestiricileri yaygın olarak tercih edilmektedir. Bununla birlikte EKK kestiricileri sapan değerlere karşı oldukça hassas olduğundan, veri kümesinin sapan değerler içermesi durumunda veriler hakkında EKK kestiricileriyle yapılacak yorumlamalar geçersiz ve yanıltıcı olabilmektedir. Bu gibi durumlarda sapan değerler için önerilen güçlü regresyon yöntemlerini tercih etmek, sonuçların güvenirliliği açısından daha uygundur. İstatistiksel çözümlemelerde kullanılan bu güçlü yöntemlerden biri de En Küçük Medyan Kareler yöntemidir (EKMK). Bu çalışmada, benzetim yoluyla oluşturulan veri kümelerinden yararlanılarak basit doğrusal regresyon modeli için EKK ve EKMK yöntemlerinden elde edilen model kestirim değerleri ((30, (3j, <j2, R2) karşılaştırılmıştır.
219-229

REFERENCES

References: 

BARNETT V, LEWIS T, 1994. Outliers in Statistical Data. John Wiley Sons, Canada, pp.7-25.
BARRETO H, 2001. An Introduction to Least Median of Squares,
www.wabash.edu/econexcel BIRKES D, DODGE Y, 1993. Alternative Methods of Regression. John Wiley Sons,
New York, pp.80-140. DAVIES PL, GATHER U, 1993. The Identification of Multiple Outliers. Journal of
Statistical Planning and Inference, 122, 65-78. EDELSBRUNNER H, SOUVANIE L, 1990. Computing Least Median ofSquares
Regression Lines and Guided Topological Sweep. Journal of the American
Statistical Association, 85(409), 115-119.
ERICKSON J, HAR-PELED S, MOUNT DM, 2006. On the Least Median Square
Problem. Discrete Comptutational Geometry. 36, 593-607. FOX J, 1997. Applied Regression Analysis: Linear Models and Related Methods. Sage
Publication, USA, pp.123-240. GOODAL C, 1983. Examining Residuals. In: HOAGLIN D & TUKEY J (Eds.)
Understanding Robust and Exploratory Data Analysis. John Wiley Sons,
Canada, pp.211-242.
KLEINBAUM, KUPPER, MULLER, and NIZAM, 1998. Applied Regression Analysis and Other Multivariate Methods. Duxbury, USA.
MOHEBBI M, NOURIJELYANI K, ZERAATI H, 2007. A Simulation Study on
Robust Alternatives of Least Squares Regression. Journal of Applied Sciences,
7(22), 3469-3476.
MONTGOMERY D, HINES W, 1990. Probability and Statistics in Engineering and
Management Science, John Wiley Sons, Canada.
MOUNT DM, NETANYAHU N, ROMANIK K, SILVERMAN R, WU AY, 2007. A
Pratical Approximation Algorithm for The LMS Line Estimator. Computational
Statistics and Data Analysis, 51, 2461-2486. NAIR KR, SHRIVASTAVA MP, 1942. On a Simple Method of Curve Fitting.
Sankhaya, 6, 121-132. NETER J, KUTNER M, NACHTSHEIM C, and WASSERMAN W, 1996. Applied
Lineear Regression Models, Irwin, USA. OLSON CF, 1997. An Approximation Algorithm for Least Median of Squares
Regression. Information Processing Letters, 63, 237-241.
ORTIZ M, SARABIA L, and HERRERO A, 2006. Robust Regression Techniques: A
Useful Alternative for the Detection Data in Chemical Analysis. Talanta, 70, 499-512.
ROUSSEEUW JP, 1984. Least Median of Squares Regression. Journal of the American
Statistical Association, 79(388), 871-880. ROUSSEEUW P, LEROY A, 1987. Robust Regression and Outlier Detection. John
Wiley Sons, Canada, pp. 84-143. RYAN TP, 1997. Modern Regression Methods. John Wiley Sons, New York. WALD A, 1940. The Fitting of Straight Lines if Both Variables are Subject to Error.
Annals of Mathematical Statistic, 11, 282-300. WILCOX RR, 1997. Introduction to Robust estimation and Hypothesis Testing.
Academic Press. San Diego.

Thank you for copying data from http://www.arastirmax.com