Buradasınız

Matris Metoduyla Jacobsthal Sayılar Üzerine

On The Jacobsthal Numbers By Matrix Method

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this paper we consider the usual Jacobsthal numbers. We investigate the identities between the Jacobsthal numbers and matrices, which are introduced for the first time in this paper. We also present a new complex sum formula.
Abstract (Original Language): 
Bu çalışmada, alışılmış Jacobsthal sayılarını göz önüne aldık. Jacobsthal sayıları ve bu çalışmada ilk kez tanıtılan matrisler arasındaki özdeşlikleri inceledik. Birde yeni bir karmaşık toplam formülü sunduk
69-76

REFERENCES

References: 

[I] Vajda S., 1989. Fibonacci and Lucas Numbers and the Golden Section. Chichester, Brisbane,
Toronto, New York, USA. [2] Horadam A.F., 1996. Jacobsthal Representation Numbers. Fibonacci Quarterly. 34, 40-54. [3] Horadam A.F., 1997. Jacobsthal Representation Polynomials. Fibonacci Quarterly. 35, 137-148. [4] Djordjevid G.B., 2000. Derivative Sequences of Generalized Jacobsthal and Jacobsthal-Lucas
Polynomials. Fibonacci Quarterly, 38, 334-338. [5] Koshy T., 2001. Fibonacci and Lucas Numbers with applications. Pure and Applied Mathematics,
Wiley-Interscience, New York, USA. [6] Djordjevid G.B., Srivastava H.M., 2005. Incomplete generalized Jacobsthal and Jacobsthal-Lucas
numbers. Mathematical and Computer Modelling, 42, 1049-1056. [7] Cerin Z., 2007. Sums of Squares and Products of Jacobsthal Numbers. Journal of Integer Sequence,
10, Art 07.2.5.
[8] Koken F., Bozkurt D., 2008. On the Jacobsthal numbers by matrix methods. International Journal of
Contemporary Mathematical Sicences 3(13), 605-614. [9] Koken F., Bozkurt D., 2008. On the Jacobsthal-Lucas numbers by matrix methods. International
Journal of Contemporary Mathematical Sicences 3(13), 1629-1633. [10] Köken F., 2008. Jacobsthal Ve Jacobsthal-Lucas Sayılarının Özellikleri Ve Uygulamaları. Yüksek
Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
[II] Djordjevid G.B., 2009. Generalized Jacobsthal Polynomials. Fibonacci Quarterly, 38, 239-243.

Thank you for copying data from http://www.arastirmax.com