Buradasınız

Alzheimer hastalığında kemokin ve kemokin reseptörlerinin rolü

Journal Name:

Publication Year:

Abstract (2. Language): 
Alzheimer's disease (AD) that is an etiologically heterogeneous form of brain failure affects more than 18 million people worldwide and is characterized by progressive memory loss, cognitive impairment and behavioral changes. The disease associated with neuronal loss in cortical and subcortical regions and increased production and accumulation of p-amyloid (Ap) peptide and neurofibrillary tangle (NpT) formation. Chemokines and their receptors are released by different cells in response to tissue injury and their primary function is the migration of leukocytes to inflammatory sides. Recent studies point out that the involvement of chemokines in the inflammatory process associated with AD brain. This review focuses on the recent progress regarding the neuroinflammatory roles of chemokines and chemokin receptor involvement in AD.
Abstract (Original Language): 
İlerleyici hafıza kaybı, bilişsel yetmezlik ve davranış değişiklikleri ile karakterize Alzheimer hastalığı (AH), beyin yetmezliğinin etiolojik olarak heterojen bir grubunu oluştururken dünya üzerinde de 18 milyondan fazla insanı etkilemektedir. AH kortikal ve subkortikal bölgelerdeki nöronal kaybın yanı sıra P-amiloid (Ap) peptid üretiminin artışı, birikimi ve nörofibriler yumakların (NpT) oluşumu ile ilişkilidir. Doku hasarına karşı birçok farklı hücre tarafından salınan kemokinler ve reseptörlerinin birincil görevleri lökositlerin inflamasyon bölgesine migrasyonunu sağlamaktır. Yapılan son çalışmalar, AH beyni ile inflamatuvar süreçte yer alan kemokinlerin ilişkili olduğuna dikkat çekmektedirler. Bu derlemede, AH'de kemokin ve kemokin reseptörlerinin nöroinflamtuvar rolleri ile ilgili son gelişmeler üzerinde durulmaktadır.
39-44

REFERENCES

References: 

1. O'Brien J, Ames D, Burns A. Dementia. Second edition. London: Arnold; 2000:405-15.
2. Alzheimer's Association www.alz.org (Last update: 6/1/2009)
3. AlzheimerEurope www.dementia-in-europe.eu(Last update: 31/10/2006)
4. www.alzheimer.gen.tr
5. Selkoe DJ. Neuropathology and molecular biology of Alzheimer Disease. In Dementia Update. American Academy ofNeurology 49th Annual Meeting, April 12-19, 1997 Boston, MA:1997, AmericanAcademy ofNeurologyPress, USA;1997:39-61.
6. Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW. In vitro aging ofbeta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 1991;563:311-4.
7. Lorenzo A, Yankner BA. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci 1994;91:12243-7.
8. Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, et al. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons.JNeurosci 1999;19:8876-84.
9. Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA. Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat Med 1998;4:827-31.
10. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol 1999;155:853-62.
11. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther, et al. Soluble pool ofAbeta amyloid as a determinant ofseverity ofneurodegeneration in Alzheimer's disease. Ann Neurol 1999;46:860-6.
12. Wang J, Dickson DW, Trojanowski JQ, Lee VM. The levels ofsoluble versus insoluble brain Abeta distinguish Alzheimer's disease from normal and pathologic aging. ExpNeurol 1999;158:328-37
13. Clarkson AN, Sutherland BA, Appleton I. The biology and pathology ofhypoxia-ischemia: an update. Arch Immunol Ther Exp 2005;53:213-25.
14. Benveniste EN. Inflammatory cytokines within the central nervous system: sources, function, and mechanism ofaction. Am J Physiol Cell Physiol 1992;263:1-16.
15. Ramirez MR, Muraro F, Zylbersztejn DS, Abel CR,
Arteni NS, Lavinsky D, et al. Neonatal hypoxia-ischemia reduces ganglioside, phospholipid and cholesterol contents in the rat hippocampus. Neuroscience Research 2003;46(3):339-47.
16. Benveniste EN, Nguyen VT, O'Kecfe GM. Immunological aspects ofmicroglia: relevance to Alzheimer's disease. Neurochem Int 2001;39:381-91.
17. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer's disease. Neurobiol Aging 2000;21:383-421.
18. Kara
İ
, Müdüroğlu A. [İnflamasyon ve Norodejeneratif Hastalıklar.] Türkiye Klinikleri J Med Sci
2008;28(Suppl):115-8.
19. Aisen PS. Anti-inflammatory therapy for Alzheimer's disease. Neurobiol Aging 2000;21:447-8.
20. Thal LJ. Anti-inflammatory drugs and Alzheimer's disease. Neurobiol Aging 2000;21:449-50.
21. Lindley IJD, Westwick J, Kunkel SL. Nomenclature announcement- the chemokines. Immunol Today 1993;14:24.
22. Bokoch GM: Chemoattractant signalling and leukocyte activation. Blood 1995;86:1649-60.
23. Ono SJ, Nakamura T, Miyazaki D, Ohbayashi M, Dawson M, Toda M. Chemokines. Roles in leukocyte development, trafficking and effector function. J Allergy Clin Immunol 2003;111:1185-99.
24.
Çağla
r M, Kansu E. Kemokinler, kemokin reseptörleri ve inflamasyon. ANKEM Dergisi 2004;18(Ek2):164-
8.
25. Oppenheim JJ, Zachariae COC, Mukaida N, Matsushima K. Properties ofthe novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol 1991;9:617-48.
26. Baggiolini M, Loestscher P. Chemokines in inflammation and immunity. Immunol Today 2000;21:418-20.
27. Mackay CR. Chemokines: immunology's high impact factors. Nature Immunol 2001;2:95-101.
28. Murdoch C, Finn A. Chemokine receptors and their role in inflammation and infectious diseases. Blood
2000;95:3032-43.
29. Loetscher P, Seitz M, Baggiolini M, Moser M. Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes.JExp Med 1996;184:569-77.
30. Bonecchi R, Galliera E, Borroni EM, Corsi MM, Locati M, Mantovani A. Chemokines and chemokine receptors: an overview. Front Biosci. 2009 Jan 1;14:540-51.
31. Wong MM, Fish EN. Chemokines:attractive mediators ofthe immune response. Sem Immunol 2003;15:5-14.
32. Glabinski AR, RansohoffRM. Chemokines and chemokine receptors in CNS pathology. J Neurovirology
1999;5:3-12.
33. Xia MQ, Hyman BT. Chemokines/chemokine receptors in the central nervous system and Alzheimer's disease.
S.D.Ü. Tıp pak.
Derg
. 2009:16(4)/ 39-44
44
Calapoğlu, AH'da kemokin ve kemokin reseptörleri
JNeurovirology
1999;5:32-41
.
34. Smits HA, Rijsmus A, van Loon JH, Wat JWY, Verhoef J, Boven LA, et al. Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. JNeuroimmunol 2002;127:160-8.
35. Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy GM, et al. Inflammatory repertoire of Alzheimer's disease and nondemented elderly microglia invitro. Glia 2001;35:72-9.
36. Ishizuka K, Kimura T, Igata-yi R, Katsuragi S, Takamatsu J, Miyakawa T. Identification ofmonocyte chemoattractant protein-1 in senile plaques and reactive microglia ofAlzheimer's disease. Psychiatry Clin Neurosci 1997;51:135-8.
37. Xia MQ, Qin SX, Wu LJ, Mackay CR, Hyman BT. Immunohistochemical study ofthe beta-chemokine receptors CCR3 andCCR5 and their ligands in normal and Alzheimer's disease brains. Am J Pathol 1998;153:31-7.
38. Pola R, Flex A, Gaetani E, Proia AS, Papaleo P, Di Giorgio A, et al. Monocyte chemoattractant protein-
1 (MCP-1) gene polymorphism and risk ofAlzheimer's disease in Italians. Exp Gerontol 2004;39:1249-56.
39. Combarros O, Infante J, Llorca J, Pena N, Fernandez-Viadero C, Berciano J. The chemokine receptor CCR5-32 gene mutation is not protective against Alzheimer's disease. Neurosci Lett 2004;366(3):312-4.
40. Fenoglio C, Galimberti D, Lovati C, Guidi I, Gatti A, Fogliarino S, et al. MCP-1 in Alzheimer's disease patients: A-2518G polymorphism and serum levels. Neurobiol Aging 2004;25(9):1169-73.
41. Combarros O, Infante J, Llorca J, Berciano J. No evidence for association ofthe monocyte chemoattractant protein-1(2518) gene polymorphism and Alzheimer disease. Neurosci Lett 2004;360:25-8.
42. Tamura Y, Sakasegawaa Y, Omia K, Kishidaa H, Asadad T, Kimura H, et al. Association study ofthe chemokine, CXC motif, ligand 1 (CXCL1) gene with sporadic Alzheimer's disease in a Japanese population. Neurosci Lett2005;379:149-51.
43. Xia MQ, Qin SX, Wu LJ, Mackay CR, Hyman BT. Immunohistochemical study ofthe beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer's disease brains. Am J Pathol 1998;153:31-7.
44. Xia MQ, Bacskai BJ, Knowles RB, Qin SX, Hyman BT. Expression ofthe chemokine receptor CXCR3 on neurons and the elevated expression ofits ligand IP-10in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer's disease. J Neuroimmunol 2000;108:227-35.
45. Xia M, Hyman BT. GROalpha/KC, a chemokine receptor CXCR2 ligand, can be a potent trigger for neuronal ERK1/2 and PI-3 kinase pathways and for tau hyperphosphorylation: a role in Alzheimer's
disease? J Neuroimmunol 2002;122:55-64.
46. Streit WJ, Conde JR, HarrisonJK. Chemokines and Alzheimer's disease. Neurobiol Aging 2001;22:909-13.
47. Halks-Miller M, Schroeder ML, Haroutunian V, Moenning U, Rossi M, Achim C et al. CCR1 is an early and specific marker ofAlzheimer's disease. Ann Neurol 2003;54:638-46.
48. CH. Kim SJ. Kim JD, Choi IS. Choi IH. Fas ligand and fas are expressed constitutively in human astrocyles and the expression increases with IL-1, IL-6, TNF-a, or IFN-g.JImmunol 1999;162:1889-95.
49. Tuppo E.E, Arias H.R. The role ofinflammation in Alzheimer's disease. The International Journal of Biochemistry & Cell Biology 2005; 37:289-305.

Thank you for copying data from http://www.arastirmax.com