Arsac, G., & Mante, M. (1983). Des problemes ouverts dans nos classes de premier cycle, Petit x, 2, pp.5-33. Retrieved October 13, 2012 from http://www-irem.ujf-grenoble.fr/revues/ revue_x/fic/2/2x1.pdf .
Arsac, G., Germain, G., & Mante, M. (1988). Problème ouvert et situation-problème, IREM, Villeurbanne.
Bağcivan, B. (2005). İlköğretim yedinci sınıflarda bilgisayar destekli geometri öğretimi. Yayınlanmamış Yüksek Lisans Tezi. Bursa: Uludağ Üniversitesi Sosyal Bilimler Enstitüsü.
Bintaş, J., Ceylan, B., & Dönmez, O. (2006). Dinamik geometri yazılımları aracılığıyla ispat yoluyla öğrenme, Eğitimde Çağdaş Yönelimler–3 Yapılandırmacılık ve Eğitime Yansımaları Çalıştayı (29 Nisan 2006). İzmir: Tevfik Fikret Okulları.
Cai, J., & Hwang, S. (2002). Generalized and generative thinking in U.S. and Chinese students’ mathematical problem solving and problem posing. Journal of Mathematical Behavior, 21(4), 401-421.
Çepni, S. (2007). Araştırma ve proje çalışmalarına giriş (3. Baskı). Trabzon: Celepler Matbaacılık. (MEB, 2005).
Chazan, D. (1993). High school geometry students’ justification for their views of empirical evidence and mathematical proof. Educational Studies in Mathematics, 24, 359–387.
Christou , C., Mousoulides, N., Pittalis, M., & Pitta-Pantazi, D. (2004). Proofs through Exploration in dynamic geometry environments. International Journal of Science and Mathematics Education (2004) 2: 339–352.
Christou, C., Mousoulides, N., Pittalis, M., & Pitta-Pantazi, D. (2005). Problem solving and problem posing in a dynamic geometry environment. The Montana Mathematics Enthusiast (TMME), 2(2), 125-143.
Clement, J. (2000) Analysis of clinical interviews: Foundations and model viability. In Lesh, R. and Kelly, A., Handbook of research methodologies for science and mathematics education (pp. 341-385). Hillsdale, NJ: Lawrence Erlbaum.
Turkish Online Journal of Qualitative Inquiry, July 2013, 4(3)
73
De Villiers, M. (2004). The role and function of quasi-empirical methods in mathematics, Canadian Journal of Science, Mathematics and Technology Education, 4 (3), pp. 397–418.
Edwards, L. (1997). Exploring the territory before proof: Students' generalizations in a computer microworld for transformation geometry. International Journal of Computers for Mathematical Learning, 2, pp. 187-215.
Furinghetti, F., & Paola, D. (2003). To produce conjectures and to prove them within a dynamic geometry environment: a case study, In Proceeding of Psychology of Mathematics 27th international Conference, 397-404.
Goldenberg, E. P. & Cuoco, A. A. (1998). What is dynamic geometry? In R. Lehrer and D. Chazan (Eds.). Designing Learning Environments for Developing Understanding of Geometry and Space (pp. 351-368). Lawrence Erlbaum, Mahwah: USA.
Güven, B., & Karataş, İ. (2003). Dinamik geometri yazılımı cabri ile geometri öğrenme: Öğrenci görüşleri. The Turkish Online Journal of Educational Technology – TOJET , 2 (2).
Healy, L. & Hoyles, C. (2001). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 6, pp. 235–256.
Jones, K., (2000). Providing a foundation for deductive reasoning: Students' interpretations when using Dynamic Geometry Software and their evolving mathematical explanations, Educational Studies in Mathematics, Vol. 44, No. 1/2, Proof in Dynamic Geometry Environments. (2000), pp. 55-85.
Karataş, İ., & Güven, B. (2008). Bilgisayar donanımlı ortamlarda matematik öğrenme: Öğretmen adaylarının kazanımları. 8th International Educational Technology Conference (pp.529-534). Eskişehir: Anadolu University.
Köse, N. Y., & A. Özdaş (2009). İlköğretim 5. sınıf öğrencileri geometrik şekillerdeki simetri doğrularını cabri geometri yazılımı yardımıyla nasıl belirliyorlar? İlköğretim-Online, 8(1), 159-175.
Laborde, C. (2000). Dynamical geometry environments as a source of rich learning contexts for the complex activity of proving, Educational Studies in Mathematics, vol. 44/1-2, Kluwer Academic Publisher.
Leung, A., & Or, C. M. (2007). From construction to proof: Explanations in dynamic geometry environment. In (Eds.) Woo, J. H., Lew, H. C., Park, K. S. & Seo, D. Y. Proceedings of the 31st Conference of the International Group for the Psychology of Mathematics Education, Vol. 3, pp. 177-184. Seoul: PME.
Lincoln, Y. S., & Guba, E.G. (1985). Naturalistic inquiry. California: Sage.
Marrades, R., & Gutiérrez, A. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational Studies in Mathematics, 44, pp. 87-125.
Miles, M., & Huberman, A. (1994). Qualitative data analysis (2nd Edition). London: Sage Publications.
Mogetta, C., Olivero, F., & Jones K. (1999). Designing dynamic geometry tasks that support the proving process, Proceedings of the British Society for Research into Learning Mathematics, 19 (3), 97-102.
Olivero, F., & Sutherland, R. (2000). The churchill cabri project: Background and overview. Rowland, T. (Ed.) Proceedings of the British Society for Research into Learning Mathematics ,20 (3).
Olivero, F. (2001). Conjecturing in open geometric situations using dynamic geometry: An exploratory classroom experiment, Research in Mathematics Education, 3(1), pp. 229-246.
Turkish Online Journal of Qualitative Inquiry, July 2013, 4(3)
74
Or, M. C. (2005). Experimentation, Construction, Conjecturing and Explanation in A Dynamic Geometry Environment. Unpublished Master’s Thesis, University of Hong Kong.
Scher, D. P. (2002). Students’ conceptions of geometry in a dynamic geometry software environment. Unpublished Doctoral Thesis, New York University, School of Education.
Straesser, R. (2001). Cabri-geometre: Does Dynamic Geometry Software (DGS) change geometry and its teaching and learning?, International Journal of Computers for Mathematical Learning, Vol. 6, pp.319-333.
Van De Walle, J. A. (2004). Elementary and middle school mathematics. (5th Edition). Boston: Allyn and Bacon.
Yin, R. (1994). Case study research: Design and methods. Sage: USA.
Thank you for copying data from http://www.arastirmax.com