Buradasınız

Sigara İçme Davranışında Cinsiyet Farkı ve Nikotinin Temel Etki Mekanizmaları

SEX DIFFERENCE IN SMOKING BEHAVIOR AND THE BASIC MECHANISM OF THE NICOTINE EFFECTS

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Nicotine is the primary component of tobacco that causes its habitual use. Smoking is responsible for diseases and death. Therefor e there are a lot of cessation and replacement therapy programs to give up smoking. Although tobacco smoking has declined over the past 30 years, the decline has been less pronounced in women and especially in adolescent girls than in men. Studies made to clarify the underlying causes of this fact reveal that smoking behavior may be different in men then women. Nicotine acts on the dopaminergic system of the brain that leads the smoking behavior. In some studies, nicotine induced dopamine release in the nucleus accumbens; a very important point in the rewarding system is higher in female rats then in males. It is assumed that, this difference is related to the hormones and it is proven that, in ovariec-tomized rats, nicotine induced dopamine release in nucleus accumbens is declined. It is likely that estrogen is effective on smoking behavior and cessation. It is necessary that gender differences should be considered for better success of cessa¬tion and replacement therapy programs and therapeutic approaches should be developed under this point of view.
Abstract (Original Language): 
Nikotin, tütün bağımlılığının birinci etkenidir. Sigara hastalıklar ve ölümden sorumludur. Bu nedenle sigarayı bırakmak için birçok program ve replasman tedavisi geliştirilmiştir. Son 30 yılda sigara içiminde bir azalma olmasına rağmen kadınlar ve özellikle adolesan kızlarda azalma erkeklere göre daha az belirgindir. Bunun nedenini aydınlatmak için yapılan çalışmalar, kadın ve erkeğin sigara içme davranışlarının farklı olabileceğini ortaya çıkarmıştır. Nikotin, sigara içme davranışının sürdürülmesi için beyindeki dopaminerjik sistemi etkiler. Bazı çalışmalar önemli bir bağımlılık merkezi olan nukleus akkumbenste niko¬tine dopamin yanıtının dişi hayvanlarda daha yüksek olduğunu göstermiştir. Bu farkın hormonlarla ilişkili olabileceği düşünülmüş ve yumurtalıkları alınmış sıçanlarda nükleus akkumbenste-ki nikotine bağlı dopamin salınımının azaldığı saptanmıştır. Östrojenin sigara içmede ve bırakmada etkili olması muhte¬meldir. Sigarayı bırakma programları ve replasman tedavilerin¬de cinsiyet farkının göz önünde tutulması ve tedavi yaklaşımlarının bu açıdan geliştirilmesi gereklidir.
177-182

REFERENCES

References: 

Gill JS, Shipley MJ, Tsementzis SA ve ark. Cigarette smoking. A risk factor for hemorrhagic and nonhemorrhagic stroke. Arch Intern Med 1989; 149(9): 2053-7.
2. Wang L, Kittaka M, Sun N, Schreiber SS, Zlokovic BV. Chronic nicotine treatment enhances focal ischemic brain injury and depletes free pool of brain microvascular tissue plasminogen activator in rats. J Cereb Blood Flow Metab 1997; 17(2): 136-46.
3. Okuyemi KS, Ahluwalia JS, Harris KJ. Pharmacotherapy of smoking cessation. Arch Fam Med 2000; 9(3): 270-81.
4. Mihailescu S, Drucker-Colin R. Nicotine and brain disorders. Acta Pharmacol Sin 2000; 21(2): 97-104.
5. Wolf JM, Lashner BA. Inflammatory bowel disease: sorting out the treatment options. Cleve Clin J Med 2002; 69(8): 621-6, 629-31.
6. Perkins KA, Donny E, Caggiula AR. Sex differences in nicotine effects and self-administration: review of human and animal evidence. Nicotine Tob Res 1999; 1(4): 301-7.
7. Fiore MC. Trends in cigarette smoking in the United States. The epi¬demiology of tobacco use. Med Clin North Am 1992; 76(2): 289-303.
8. Perkins KA. Sex differences in nicotine vs. non-nicotine reinforcement as determinants of tobacco smoking. Exp Clin Pyschopharmacol 1996; 4:
119-132.
9. Killen JD, Fortmann SP, Newman B, Varady A. Evaluation of a treat¬ment approach combining nicotine gum with self-guided behavioral treat¬ments for smoking relapse prevention. J Consult Clin Psychol 1990;
58(1): 85-92.
10. Hughes J. Pharmacotherapy of nicotine dependence. Pharmacological Aspects of Drug Dependence: Toward an Integrative Neurobehavioral Approach'da.Ed. Schuster MJ, Newyork, Springer Verlag, 1996; 599¬626.
11. Pomerleau CS, Pomerleau OF, Garcia AW. Biobehavioral research on nicotine use in women. Br J Addict 1991; 86(5): 527-31.
12. Perkins KA, Grobe JE, Stiller RL ve ark. Nasal spray nicotine replace¬ment suppresses cigarette smoking desire and behavior. Clin Pharmacol
Ther 1992; 52(6): 627-34.
13. Jansson A, Anderson K, Fuxe K, Bjelke B, Eneroth P. Effects of com¬bined pre- and postnatal treatment with nicotine on hypotalamic cateco-lamine nerve terminal systems and neuroendocrine function in the four week old and adult male and female diestrous rat. J Neuroendocrinol
1989; 1: 455-64.
14. Andersson K, Eneroth P, Fuxe K, Harfstrand A. Effects of acute intermittent exposure to cigarette smoke on hypothalamic and preoptic catecholamine nerve terminal systems and on neuroendocrine function in the diestrous rat. Naunyn Schmiedebergs Arch Pharmacol 1988; 337(2):
131-9.
15. Anderson K, Fuxe K, Eneroth P, Mascagni F, Agnati LF. Effect of intermittent exposure to cigarette smoke on catecholamine levels and turnover in various types of hypothalamic DA and NA nerve terminal sys¬tems as well as on the secretion of adenohypophyseal hormones and cor-ticosterone. Acta Physiol Scand 1985; 124: 277-85.
16. Rosecrans JA. Effects of nicotine on brain area 5-hydroxytryptamine function in male and female rats separated for differences of activity. Eur J Pharmacol 1971; 16(1): 123-7.
17. Schechter MD, Rosecrans JA. CNS effect of nicotine as the discrimina¬tive stimulus for the rat in a T-maze. Life Sci 11971; 10(14): 821-32.
18. Hatchell PC, Collins AC. The influence of genotype and sex on behav¬ioral sensitivity to nicotine in mice. Psychopharmacology (Berl) 1980;
71(1): 45-9.
19. Yılmaz O, Kanıt L, Okur BE, Pogun S. Effects of nicotine on active avoidance learning in rats: sex differences. Behav Pharmacol 1997; 8(2-
3): 253-60.
20. Köylü E, Demirgören S, London ED, Pogun S. Sex difference in up-regulation of nicotinic acetylcholine receptors in rat brain. Life Sci 1997;
61(12): 185-90.
21. Kanyt L, Stolerman IP, Chandler CJ, Saigusa T, Pogun S. Influence of sex and female hormones on nicotine-induced changes in locomotor activity in rats. Pharmacol Biochem Behav 1999; 62(1): 179-87.
22. Dluzen DE, Anderson LI. Estrogen differentially modulates nicotine-evoked dopamine release from the striatum of male and female rats.
Neurosci Lett 1997; 230(2): 140-2.
23. Dominiak P, Kees F, Grobecker H. Changes in peripheral and central catecholaminergic and serotoninergic neurons of rats after acute and sub-acute administration of nicotine. Klin Wochenschr 1984; 62 Suppl 2: 76¬80.
24. McGehee DS, Role LW. Physiological diversity of nicotinic acetyl-choline receptors expressed by vertebrate neurons. Annu Rev Physiol
1995; 57: 521-46.
25. Karlin A. Structure of nicotinic acetylcholine receptors. Curr Opin
Neurobiol 1993; 3(3): 299-309.
26. Lena C, Changeux JP. Allosteric modulations of the nicotinic acetyl-choline receptor. Trends Neurosci 1993; 16(5): 181-6.
27. Benwell ME, Balfour DJ, Anderson JM. Evidence that tobacco smok¬ing increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem 1988; 50(4): 1243-7.
28. Collins AC, Luo Y, Selvaag S, Marks MJ. Sensitivity to nicotine and brain nicotinic receptors are altered by chronic nicotine and mecamy-lamine infusion. J Pharmacol Exp Ther 1994; 271(1): 125-33.
29. Corrigall WA, Coen KM, Adamson KL. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental
area. Brain Res 1994; 653(1-2): 278-84.
30. Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S.
Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 1994; 79(4): 705-15.
31. Deneris ES, Boulter J, Swanson LW, Patrick J, Heinemann S. Beta 3: a new member of nicotinic acetylcholine receptor gene family is
expressed in brain. J Biol Chem 1989; 264(11): 6268-72.
32. Lindstrom J, Anand R, Peng X, Gerzanich V, Wang F, Li Y. Neuronal nicotinic receptor subtypes. Ann N Y Acad Sci 1995. 757: 100-16.
33. Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci
1997; 20(2): 92-8.
Türkiye Aile Hekimliği Dergisi |
Turkish Journal of Family Practice | Cilt 8 | Sayı 4 | 2004 | 181
34. Vernino S, Amador M, Luetje CW, Patrick J, Dani JA. Calcium mod¬ulation and high calcium permeability of neuronal nicotinic acetylcholine
receptors. Neuron 1992; 8(1): 127-34.
35. Haghighi AP, Cooper E. A molecular link between inward rectification and calcium permeability of neuronal nicotinic acetylcholine alpha3beta4
and alpha4beta2 receptors. J Neurosci 2000. 20(2): 529-41.
36. Luetje CW, Patrick J. Both alpha- and beta-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J
Neurosci 1991; 11(3): 837-45.
37. Descarries L, Gisiger V, Steriade M. Diffuse transmission by acetyl-
choline in the CNS. Prog Neurobiol 1997; 53(5): 603-25.
38. Descarries L. The hypothesis of an ambient level of acetylcholine in the central nervous system. J Physiol Paris 1998; 92(3-4): 215-20.
39. Grady S, Marks MJ, Wonnacott S, Collins AC. Characterization of nicotinic receptor-mediated [3H] dopamine release from synaptosomes prepared from mouse striatum. J Neurochem 1992. 59(3): 848-56.
40. Freeman GB, Sherman KA, Gibson GE. Locomotor activity as a predictor of times and dosages for studies of nicotine's neurochemical actions. Pharmacol Biochem Behav 1987. 26(2): 305-12.
41. Grenhoff J, Svensson TH. Selective stimulation of limbic dopamine
activity by nicotine. Acta Physiol Scand 1988; 133(4): 595-6.
42. Calabresi P, Lacey MG, North RA. Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. Br J
Pharmacol 1989; 98(1): 135-40.
43. Clarke PB, Kumar R. The effects of nicotine on locomotor activity in non-tolerant and tolerant rats. Br J Pharmacol 1983; 78(2): 329-37.
44. Benwell ME, Balfour DJ. The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J
Pharmacol 1992; 105(4): 849-56.
45. Pogun S. Sex differences in brain and behavior: emphasis on nicotine, nitric oxide and place learning. Int J Psychophysiol 2001; 42(2): 195¬208.
46.
Şahine
r M, Demirgören S, Pogun S. Sıçan nükleus akkumbensinde nikotinin dopamin, DOPAC, HVA düzeyleri üzerine etkisinde cinsiyet farklılığı. Türk Fizyolojik Bilimler Derneği 25. Ulusal Kongresi 1999; 59: Elazığ, Türkiye.
47.
Doğa
n YH, Demirgören S, Pogun S. Sican nukleus akkumbensinde nikotin ile olusturulan dopamin salıverilmesine gonadal hormonlarin etk¬isi, in-vivo mikrodializ calışması. Türk Fizyolojik Bilimler Derneği 29. Ulusal Kongresi. 2003; 59: GATA-Ankara.
48. Dluzen DE, Ramirez VD. In vivo changes in responsiveness of the cau¬date nucleus to L-dopa infusion as a function of the estrous cycle. Brain
Res 1990; 536(1-2): 163-8.
49. Xiao L, Becker JB. Quantitative microdialysis determination of extra¬cellular striatal dopamine concentration in male and female rats: effects of estrous cycle and gonadectomy. Neurosci Lett 1994; 180(2): 155-8.
50. Becker JB. Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behav 1999; 64(4): 803-12.
51. Nordberg A, Romanelli L, Sundwall A, Bianchi C, Beani L. Effect of acute and subchronic nicotine treatment on cortical acetylcholine release and on nicotinic receptors in rats and guinea-pigs. Br J Pharmacol 1989;
98(1): 71-8.
52. Corrigall WA, Coen KM. Nicotine self-administration and locomotor activity are not modified by the 5-HT3 antagonists ICS 205-930 and
MDL 72222. Pharmacol Biochem Behav 1994; 49(1): 67-71.
53. Levin ED. Nicotinic systems and cognitive function. Psychopharmaco-
logy (Berl) 1992; 108(4): 417-31.
54. Schepers G, Rustemeier K, Walk RA, Hackenberg U. Metabolism of S-nicotine in noninduced and aroclor-induced rats. Eur J Drug Metab Pharmacokinet 1993; 18(2): 187-97.
55. Saigusa T, Takada K, Baker SC, Kumar R, Stephenson JD.
Dopamine efflux in the rat nucleus accumbens evoked by dopamine receptor stimulation in the entorhinal cortex is modulated by oestradiol and progesterone. Synapse 1997; 25(1): 37-43.
56. Miller MM, Silver J, Billiar RB. Effects of gonadal steroids on the in vivo binding of [125I] alpha-bungarotoxin to the suprachiasmatic nucle¬us. Brain Res 1984; 290(1): 67-75.
57. Algan O, Furedy JJ, Demirgoren S, Vincent A, Pogun S. Effects of tobacco smoking and gender on interhemispheric cognitive function: per¬formance and confidence measures. Behav Pharmacol 1997; 8(5): 416-28.
58. Furedy JJ, Algan O, Vincent A, Demirgoren S, Pogun, S. Sexually dimorphic effect of an acute smoking manipulation on skin resistance but not on heart-rate during a cognitive verbal task. Integr Physiol Behav Sci
1999; 34(4): 219-26.

Thank you for copying data from http://www.arastirmax.com