Buradasınız

GİRDAPLI AKIŞLARDA TÜRBÜLANS MODELLERİNİN UYGUNLUĞUNUN İNCELENMESİ

Investigation into the Suitability of Turbulence Models in Swirling Flows

Journal Name:

Publication Year:

Abstract (2. Language): 
The aim of this work is to investigate the suitability of various turbulence models in highly complex swirling flows which occur in tangential inlet cyclones. Three dimensional steady governing equations for the incompressible, turbulent flow inside the cyclone are solved numerically by using Fluent CFD code, under certain boundary conditions. Different turbulence models and wall functions are tested to get axial and tangential velocity profiles, pressure drop and turbulent quantities. Predicted results are compared with the experimental and numerical values given in the literature. Results obtained from the numerical tests have demonstrated that the key to the success of CFD lies with the accurate description of the turbulent behavior of the flow and the RSM turbulence model performs much better than the other models employed.
Abstract (Original Language): 
Bu çalışmada, oldukça karmaşık ve girdaplı akışlarda türbülans modellerinin uygunluğunun incelenmesi konusu ele alınmıştır. Bu tür bir akışın görüldüğü uygulama örneği olarak teğetsel girişli bir siklon kullanılmıştır. Sabit boyut oranlarında, belli sınır şartları altında siklondaki hava hareketi için 3 boyutlu sabit özellikli ve sürekli rejim halindeki korunum denklemleri Fluent CFD yazılımı kullanılarak çözülmüştür. Çözümde farklı türbülans modelleri farklı duvar fonksiyonları ile kullanılmıştır. Yapılan nümerik analizler sonucunda, türbülans modelleri ve kullanılan duvar fonksiyonlarına bağlı olarak eksenel ve teğetsel hız değişimleri, oluşan basınç düşümü ve türbülans büyüklükleri incelenmiştir. Elde edilen sonuçlar literatürdeki deneysel ve nümerik sonuçlar ile karşılaştırılarak türbülans modellerinin performansları araştırılmıştır. Duvar fonksiyonlarında belirgin bir fark olmasa bile, özellikle eksenel hızın hesabında RSM türbülans modelinin oldukça başarılı olduğu görülmüştür.
85-96

REFERENCES

References: 

1. Alexander, R. M. ( 1949) Fundamentals of cyclone design and operation; Proc. Aus. Inst. Min. Met. NS, 152-153,
203-228.
2. Altmeyer S., Mathieu V., Jullemier S., Contal P., Midoux N., Rode S., ve Leclerc J. P. (2004) Comparisor of
different models of cyclone prediction performance for various operating conditions using a general software,
Chem. Eng. and Proc., 43, 511-522.
3. Avci A. ve Karagoz İ. (2003) Effect of flow and geometrical parameters on the collection efficiency incyclone
separators; J. of Aerosol Science, 34, 937-955.
4. Barth, W. (1956) Berechnung und Auslegung von Zyklonabscheiden auf Grund neuerer Untersuchungen; BWK, 8,
1-9.
5. Barth, W. ve Leineweber, L. (1964) Evaluation of design of cyclone separators, Staub Reinhalt. Luft,. 24, 41-55.
6. Fluent user’s guide (1998) Fluent incorporated.
7. Gibson, M. M. ve Launder, B. E. (1978) Ground effects on pressure fluctuations in the atmospheric boundary
layer. J. Fluid Mech., 86, 491-511.
8. Gimbun J., Chuah T. G., Fakhru’l-Razi A., Thomas S. Y. Choong (2005) The influence of temperature and inlet
velocity on cyclone pressure drop: a CFD study; Chemical Engineering and Processing, 44, 7-12.
9. Gong A. L. ve Wang Lian-Ze (2004) Numerical study of gas phase flow in cyclones with the repds; Aerosol
Science and Technology, 38, 506-512.
10. Karagoz, İ. ve Avci A. (2005) Modelling of the pressure drop in tangential inlet cyclone separators; Aerosol
Science and Technology, 39, 857-865.
11. Kenny L. C. ve Gussman R. A. (1995) Characterisation and modelling of a family of cyclone preseparators; J. of
Aerosol Science, 26, S777-S778.
12. Kim J. C. ve Lee K. W. (1990) Experimental study of particle collection by small cyclones; Aerosol Science and
Technology, 12, 1003-1015.
13. Köning C., Büttner H., Ebert F. (1991) Desing data for cyclones; Particle and Particle Systems Characterization,
8, 301-307.
14. Lapple, C. E. (1951) Processes use many collector types; Chemical Engineering, 58, 144-151.
15. Launder , B. E. (1989) Second-Moment Closure: Present and Future?; Int. J. Heat Fluid Flow, 10(4), 282-300.
16. Lien, F.S. ve Leschziner, M.A. (1994) Assessment of turbulence-transport models including non-linear RNG
eddy-viscosity formulation and second-moment closure for flow over a backward-facing step, Computers and
Fluids, 23(8), 983-1004.
17. Moore M. E. ve Mcfarland A. R. (1993) Performance modelling of single-inlet aerosol sampling cyclones;
Environmental Science and Technology, 27, 1842-1848.
18. Narasimha, N., Sripriya, R. , Banerjee, P. K. (2005) CFD modelling hydrocyclone-prediction of cut size; Int. J.
Miner. Process., 75, 53-68.
19. Ozkoca O. (2001) Experimental investigation of the pressure losses and efficiencies in different type of cyclones;
Msc thesis, Uludag Univercity, (Bursa) Turkey.
20. Shepherd, G.B. ve Lapple, C. E. (1939) Flow pattern and pressure drop in cyclone dust collectors, Ind. Engng.
Chem. 31.
21. Stairmand, C. J. (1951) The design and performance of cyclone separators, Trans Inst. Chem. Eng., 29, 356-383.
22. Upton, S. L., Mark, D. ve Griffiths, W. D. (1994) A wind tunnel evaluation of the sampling efficiencies of three
bioaerosol samplers; J. of Aerosol Science, 25, 1493-1501.
23. Yakhot, V. ve Orszag, S. A. (1986) Renormalizatıon Group Analysis of Turbulence. I. Basic Theory, Journal of
Scientific Computing, 1(1), 3-51.
24. Yakhot V., Orszag, S. A., Thangam, S., Gatski, T. B.ve Speziale, C. G. (1992) Development of turbulence models
for shear flows by a double expansion technique, Physics of Fluids A, 4, 1510-1520.
25. Zhu Y. ve Lee K. W. (1999) Experimental study on small cyclones operating at high flow rates; J. of Aerosol
Science, 30, 1303-1315.

Thank you for copying data from http://www.arastirmax.com