Buradasınız

TEKRARLAMALI GAUSS-SEIDEL YARDIMCI DEĞİŞKENLER ALGORİTMASI İLE TRANSFER FONKSİYONU PARAMETRELERİNİN YANSIZ TAHMİNİ

Unbiased Estimation of Transfer Function Parameters with Recursive Gauss-Seidel Instrumental Variables Algorithm

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper, a recursive algorithm based on the use of Gauss-Seidel iterations and instrumental variables together is introduced for unbiased estimation of transfer function parameters of linear time invariant discrete-time systems. Furthermore, a stochastic convergence analysis of the proposed algorithm is performed and it is shown that the proposed algorithm is an unbiased parameter estimator that gives optimum solution of normal equations even if the measurement noise is colored. The proposed algorithm is used for estimation of transfer function parameters of a sample second order system and compared with similar algorithms by a simulation study. According to the results obtained, it is shown that the proposed algorithm is a good alternative to the others by viewpoints of computational complexity and convergence rate.
Abstract (Original Language): 
Bu makalede, doğrusal zamanla değişmeyen ayrık-zamanlı sistemlerin transfer fonksiyonu parametrelerini yansız olarak tahmin etmek için, Gauss-Seidel iterasyonları ile yardımcı değişkenlerin birlikte kullanıldığı tekrarlamalı bir algoritma önerilmiştir. Ayrıca, önerilen algoritmanın stokastik yakınsama analizi yapılmış ve yardımcı değişkenlerin kullanılması durumunda ölçme gürültüsünün renkli gürültü olması durumunda bile normal denklemlerin optimum çözümünü veren yansız bir kestireç olduğu gösterilmiştir. Önerilen algoritma, yapılan bir simülasyon çalışmasıyla bir örnek ikinci derece sistemin transfer fonksiyonu parametrelerinin tahmin edilmesinde kullanılmış ve benzer algoritmalarla karşılaştırmalı olarak incelenmiştir. Elde edilen sonuçlara göre, önerilen algoritmanın işlem yükü ve yakınsama hızı açısından diğer algoritmalara iyi bir alternatif olduğu görülmüştür.
51-59

REFERENCES

References: 

1. Aström, K. J. and Wittenmark B. (1995) Adaptive Control, 2nd Ed., Prentice-Hall, Englewood Cliffs.
2. Bose, T. and Xu, G. F. (2002) The Euclidean direction search algorithm for adaptive filtering, IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, E85-A(3), 532-539.
3. Bose, T. (2004) Digital Signal and Image Processing, John Wiley, New Jersey.
4. Goodwin, G. C. and Sin, K. S. (1984) Adaptive Filtering, Prediction and Control, Prentice-Hall, Englewood
Cliffs, New Jersey.
5. Hatun, M. ve Koçal, O. H. (2005) Adaptif filtrelerde Gauss-Seidel algoritmasının stokastik yakınsama analizi,
Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 10(2), 87-92.
6. Haykin, S. (2002) Adaptive Filter Theory, 4th Ed., Prentice-Hall, Upper Saddle River, New Jersey.
7. Isermann, R., Lachman, K. H., Matko, D. (1992) Adaptive Control Systems, Prentice-Hall, New York.
8. Johansson, R. (1993) System Modeling and Identification, Prentice-Hall, Englewood Cliffs, New Jersey.
9. Kalouptsidis, S. and Theodoridis, S. (editors) (1993) Adaptive System Identification and Signal Processing
Algorithms, Prentice-Hall, New York.
10. Koçal, O. H. (1998) A new approach to least squares adaptive filtering, IEEE International Symposium on
Circuits and Systems, Monterey, California, 261-264.
11. Landau, I. D., Lozano, R. M’Saad, M. (1998) Adaptive Control, Springer-Verlag, London.
12. Ljung, L. and Söderström, T. (1983) Theory and Practice of Recursive Identification, The MIT Press, Cambridge.
13. Ljung, L. (1999) System Identification: Theory for the User, 2nd Ed., Prentice-Hall, Englewood Cliffs, New Jersey.
14. Ljung, L. (2006) System Identification Toolbox User’s Guide: For Use with MATLAB, Version 6.2, The
MathWorks, Inc.
15. Mabey, G.W., Gunther, J., Bose, T. (2004) An Euclidean direction based algorithm for blind source separation
using a natural gradient, IEEE International Conference on Acoustics, Speech and Signal Processing, 5, 561-564.
16. Raol, R. J., Girija, G., Singh, J. (2004) Modelling and Parameter Estimation of Dynamic Systems, IEE Books,
London.
17. Sinha, N. K. and Kuszta, B. (1983) Modeling and Identification of Dynamic Systems, Van Nostrand and Rainhold,
New York.
18. Söderström, T. and Stoica, P. (1981) Comparison of some instrumental variable methods: consistency and
accuracy aspects, Automatica, 17(1), 101-115.
19. Söderström, T. and Stoica, P. (1983) Instrumental Variable Methods for System Identification, Springer-Verlag,
Berlin.
20. Söderström, T. and Stoica, P. (1989) System Identification, Prentice-Hall, New York.
21. Söderström, T. and Stoica, P. (2002) Instrumental Variable Methods for System Identification, Circuits, Systems,
and Signal Processing, 22(1), 1-9.
22. Walter, E. and Pronzato, L. (1998) Identification of Parametric Models From Experimental Data, Springer, Berlin.
23. Widrow, B. and Stearns, S. D. (1985) Adaptive Signal Processing, Prentice-Hall, Upper Saddle River, New Jersey.
24. Xu, G. F., Bose, T., Schroeder, J. (1998) Channel equalization using an Euclidean direction search based adaptive
algorithm, IEEE Global Telecommunication Conference, 6, 3063-3068.
25. Xu, G. F., Bose, T., Schroeder, J. (1999) The Euclidean direction search algorithm for adaptive filtering, IEEE
International Symposium on Circuits and Systems, 3, 146-149.
26. Xu, G. F., Bose, T., Kober, W., Thomas, J. (1999) A fast adaptive algorithm for image restoration, IEEE Transaction
on Circuits and Systems-I, 46(1), 216-220.
27. Young, P. C. (1984) Recursive Estimation and Time-Series Analysis: An Introduction, Springer-Verlag, Berlin.

Thank you for copying data from http://www.arastirmax.com