Buradasınız

OTOMOBİLLERDE ISITMA SÜRECİNDE SÜRÜCÜNÜN FİZYOLOJİK TEPKİLERİNİN DİNAMİK OLARAK MODELLENMESİ

Dynamic Modelling of Driver Physiological Reactions During Heating Periods of an Automobile

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this study a Matlab-Simulink model of a human body is constituted for observing human thermal comfort and physiological reactions with the changing inside thermal parametres in heating period of an automobile. In the simulation the human body separated to 15 segment to predict local comfort in non-uniform environmental conditions like temperature, velocity and relative humidity. The model was justified with the obtained experimental data. The data used in the model were taken from the experimental measurements.
Abstract (Original Language): 
Bu çalışmada otomobillerin ısıtma sürecinde iç ortam şartlarında meydana gelen olası değişiklerde sürücünün verdiği fizyolojik tepkilerin dinamik olarak izlenebileceği model Matlab-Simulink programında hazırlanmıştır. Simülasyonda, otomobil kabini içerisindeki sıcaklık, hız ve bağıl nem gibi ısıl konfor parametrelerinin düzenli bir dağılıma sahip olmadığı dikkate alınarak vücut üzerinde yerel konfor parametrelerini incelemek için insan vücudu 15 alt bölmeli olarak tasarlanmıştır. Model literatürde bulunan çalışmalar ile doğrulanmıştır. Hazırlanan simülasyon modelinde yapılan deneysel çalışmalardan elde edilen ölçüm değerleri kullanılmıştır.
143-159

REFERENCES

References: 

1. ASHRAE Handbook-Fundamentals (1989) Atlanta, [8. Bölüm].
2. Dear, R., Arens, E., Zhang, H., Masayuki, O. (1997) Convective and radiative heat transfer coefficients for
ındividual human body segments, International Journal Biometeorol, 40, 141-156.
3. Gagge, A. P., Burton, A. C., Bazett, H. D. (1971) A practical system of units for the description of heat exchange
of man with his environment, Science, 94, 428-430.
4. Guan, Y., Hosni, M. H., Jones, B. W., Gielda, T. P. (2003a) Investigation of human thermal comfort under
highly transient conditions for automotive applications-Part 1, Ashrae Transactions, 109, 885-897.
5. Guan, Y., Hosni, M. H., Jones, B. W., Gielda, T. P. (2003b) Investigation of human thermal comfort under
highly transient conditions for automotive applications-Part 2, Ashrae Transactions, 109, 898-907.
6. Huizenga, C., Zhang, H., Arens, E. (2001) A model of human physiology and comfort for assessing complex
thermal environment, Building and Environment, 36, 691-699.
7. Kaynaklı, O., ve Kılıç M. (2005) An investigation of thermal comfort inside an automobile during the
heating period, Applied Ergonomics, 36, 301-312.
8. Kaynaklı, O., Pulat, E. ve Kılıç, M. (2005) Thermal comfort during heating and cooling periods in an
automobile, Heat Mass Transfer, 41, 449-458.
9. Olesen, B. W., Hasebe, Y., Dear, R. J. (1988) Clothing ınsulation asymetry and thermal comfort, ASHRAE
Transactions, 94(1), 32-51.
10. Raven, P. R. ve Horvath, S. M. (1970) Variability of physiological parameters of unacclimatized males
during a two hour cold stress of 5 °C, International Journal of Applied Physiology, 14(3), 309-320.
11. Stolwijk, J. A. J. ve Hardy, J. D. (1966) Partitional calorimetric studies of responses of man to thermal
transients, Journal of Applied Physiology, 21, 1799-1806.
12. Stolwijk, J. A. J. ve Hardy, J. D. (1966) Partitional calorimetric studies of responses of man during exposures
to thermal transients, Journal of Applied Physiology, 21, 967-977.
13. Winter, D. A. (1979) Biomechanics of human movement, John Wiley and Sons, New York.

Thank you for copying data from http://www.arastirmax.com