Buradasınız

YENİ BİR ADAPTİF FİLTRELEME YÖNTEMİ: HİBRİD GS-NLMS ALGORİTMASI

A New Adaptive Filtering Method: Hybrid GS-NLMS Algorithm

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this paper, a hybrid algorithm based on the use of Gauss-Seidel and Normalized Least Mean Squares algorithms together is introduced for adjusting of adaptive filter coefficients and also convergence rate, stability and computational complexity of the proposed algorithm is studied. The proposed algorithm is compared with similar algorithms by viewpoints of computational complexity and convergence rate by a simulation study. According to the results obtained, it is shown that the proposed hybrid algorithm is a good alternative to the others as an intermediate method by viewpoints of computational complexity or convergence rate.
Abstract (Original Language): 
Bu makalede, adaptif filtre katsayılarını ayarlamak için GS (Gauss-Seidel) ve NLMS (Normalized Least Mean Squares) algoritmalarının birlikte kullanıldığı hibrid bir algoritma önerilmis ve ayrıca önerilen yeni algoritmanın yakınsama hızı, kararlılığı ve islem karmasıklığı incelenmistir. Önerilen algoritma yapılan bir benzetim çalısmasıyla yakınsama hızı ve islem yükü açısından benzer algoritmalarla karsılastırmalı olarak incelenmistir. Elde edilen sonuçlara göre, önerilen hibrid algoritmanın bir ara yöntem olarak islem karmasıklığı veya yakınsama hızı açısından diğer algoritmalara iyi bir alternatif olduğu görülmüstür.
85-97

REFERENCES

References: 

1. Bose, T. and Xu, G. F. (2002) The Euclidean direction search algorithm for adaptive filtering, IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E85-A(3), 532-539.
2. Bose, T. (2004) Digital Signal and Image Processing, John Wiley, New Jersey.
3. Diniz, P. S. R. (1997) Adaptive Filtering: Algorithms and Practical Implementation, Kluwer Academic
Publishers, Boston.
4. Farhang-Boroujeny, B. (1998) Adaptive Filters: Theory and Applications, John Wiley & Sons, Chicester.
5. Golub, G. H. and Van Loan, C. F. (1996) Matrix Computations, 3rd Ed., John Hopkins University Press,
Baltimore and London.
6. Goodwin, G. C. and Sin, K. S. (1984) Adaptive Filtering, Prediction and Control, Prentice-Hall, Englewood
Cliffs, New Jersey.
7. Hatun, M. ve Koçal, O. H. (2005) Adaptif filtrelerde Gauss-Seidel algoritmasının stokastik yakınsama analizi,
Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 10(2), 87-92.
8. Haykin, S. (2002) Adaptive Filter Theory, 4th Ed., Prentice-Hall, Upper Saddle River, New Jersey.
9. Haykin, S., Widrow, B. (editors). (2003) Least-Mean-Square Adaptive Filters, Wiley-Interscience, New
Jersey.
10.Koçal, O. H. (1998) A new approach to least squares adaptive filtering, IEEE International Symposium on
Circuits and Systems, Monterey, California, 261-264.
11.Mabey, G.W., Gunther, J., Bose, T. (2004) An Euclidean direction based algorithm for blind source
separation using a natural gradient, IEEE International Conference on Acoustics, Speech and Signal
Processing, 5, 561-564.
12. Treichler, J. R., Johnson, C. R., Larimore, M. G. (1987) Theory and Design of Adaptive Filters, Wiley-
Interscience, New York.
13.Widrow, B., Stearns, S. D. (1985) Adaptive Signal Processing, Prentice-Hall, Upper Saddle River, New Jersey.
14.Xu, G. F., Bose, T., Schroeder, J. (1998) Channel equalization using an Euclidean direction search based
adaptive algorithm, IEEE Global Telecommunication Conference, 6, 3063-3068.
15.Xu, G. F., Bose, T., Schroeder, J. (1999a) The Euclidean direction search algorithm for adaptive filtering,
IEEE International Symposium on Circuits and Systems, 3, 146-149.
16.Xu, G. F., Bose, T., Kober, W., Thomas, J. (1999b) A fast adaptive algorithm for image restoration, IEEE
Transaction on Circuits and Systems-I, 46(1), 216-220.

Thank you for copying data from http://www.arastirmax.com