Buradasınız

TERMOPLASTİK ÜRÜNLERİN YENİ ÜRÜN DEVREYE ALMA SÜRECİNDE BİR YAPAY ZEKA YAKLAŞIMI

An Artificial Intelligence Approach at the First Approval Process of Thermoplastics

Journal Name:

Publication Year:

Abstract (2. Language): 
Although there are several methods in the manufacture of plastic products, injection molding is the most widespread method. There are many process parameters that increase the complexity of the molding process and the quality of molded parts are mostly influenced by these process parameters during molding process. The selection of appropriate process parameters for the injection molding operation is becoming more important to produce high quality products due to complexity of the molding process. Therefore, advanced approaches are required to model the injection molding at first approval process. In this research, artificial intelligence approach is presented to model the injection molding process with the goal of manufacturing high quality plastic parts through a cost effective approach by reducing dependency on human expertise.
Abstract (Original Language): 
Plastik ürünlerin imalatında çok değişik yöntemler kullanılmakla birlikte en yaygın yöntem enjeksiyonla kalıplama yöntemidir. Enjeksiyonla kalıplama sürecinde çok sayıda ve aralarında karmaşık ilişkilerin olduğu parametrelerle performans göstergesinin olması, sürecin karmaşıklığını arttırmakta ve bu parametreler çıkan ürünün kalitesini önemli derecede etkilemektedir. Bundan dolayı plastik enjeksiyonda çıkan ürünün kalitesi için uygun proses parametrelerinin seçimi çok önemlidir. Bu nedenle plastik enjeksiyon yeni ürün devreye alma sürecinde ileri tekniklere gereksinim vardır. Bu çalışmada, uzman insana bağımlılığı ve maliyetleri azaltarak yeni ürün devreye alma sürecinde yüksek kalitede termoplastik ürünlerin üretilebilmesi amacıyla bir yapay zeka yaklaşımı kullanılmıştır.
67-76

REFERENCES

References: 

1. Albino, V. and Garavelli, A.C., (1998) A neural network application to subcontractor rating in construction
firms, International Journal of Project Management. 16(1), 9-14.
2. Akyüz, Ö. F., (2001) Plastikler ve Plastik Enjeksiyon Teknolojisine Giriş, Pagev Yayınları, İstanbul.
3. Chang, P.C., Hwang, S.J., Lee, H.H., Huang, D.Y., (2007) Development of an external-type microinjection
molding module for thermoplastic polymer,
Journal of Materials Processing Technology, 184, 163-172.
4. Changyu, S., Lixia, W., Qian, L., (2007) Optimization of injection molding process parameters using
combination of artificial neural network and genetic algorithm method, Journal of Materials Processing
Technology, 183, 412-418.
5. Chen, Z. and Turng, L.S., (2005) A review of current developments in process and quality control for
injection molding, Advances in Polymer Technology, 24(3), 165–182.
6. Kalima, V., Pietarinen, J. Siitonen, S., Immonen, J., Suvanto, M., Kuittinen, M., Mönkkönen, K., Pakkenen,
T.T. (2007) Transparent thermoplastics: replication of diffractive optical elements using micro-injection
molding, Optical Materials, 30(2), 285-291.
7. Karataş, Ç., Sözen, A., Arcaklıoğlu, E., Ergüney, S., (2007) Modelling of yield length in the mould of
commercial plastics using artificial neural networks, Materials and Design, 28, 278-286.
8. Keçe, A., (2006) Yapay sinir ağları ile plastik enjeksiyon süreci başlangıç parametrelerinin belirlenmesi,
Yüksek Lisans Tezi, Uludağ Üniversitesi Endüstri Mühendisliği Anabilim Dalı.
9. Kurtaran, H., Özçelik, B., Erzurumlu, T., (2005) Warpage optimization of a bus ceiling lamp base using
neural network model and genetic algorithm, Journal of Materials Processing Technology, 169, 314-319.
10. Lau, H.C.W., Ning, A., Pun, K.F., Chin, K.S., (2001) Neural network for the dimensional control of molded
parts based on a reverse process model, Journal of Materials Processing Technology, 117, 89-96.
11. Öktem, H., Erzurumlu, T., Erzincanlı, F., (2006) Prediction of minimum surface roughness in end milling
mold parts using neural network and genetic algorithm, Materials and Design 27, 735-744.
12. Özçelik, B., Erzurumlu, T., (2006) Comparison of the warpage optimization in the plastic injection molding
using ANOVA, neural network model and genetic algorithm, Journal of Materials Processing Technology,
171, 437-445.
13. Pramujati, B., Dubay, R, Samaan, C., (2006) Cavity pressure control during cooling in plastic injection
molding, Advances in Polymer Technology, 25(3), 170–181.
14. Saleem, Z., Rennebaum, H., Pudel, F., Grimm, E., (2008) Treating bast fibres with pectinase ımproves
mechanical characteristics of reinforced thermoplastic composites, Composites Science and
Technology, 68(2), 471-476.
15. Shi, F., Lou, Z.L., Lu, J.G., Zhang, Y.Q., (2003) Optimisation of plastic injection moulding process with soft
computing, International Journal of Advanced Manufacturing Technology, 21, 656-661.
16. Zhu, J., Chen, J.C., (2006) Fuzzy neural network based in process mixed material caused flash prediction
(FNN-IPMFP) in injection molding operations, International Journal of Advanced Manufacturing
Technology, 29, 308-316.

Thank you for copying data from http://www.arastirmax.com